PuSH - Publikationsserver des Helmholtz Zentrums München

28 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Afghani, J.* et al.: Enhanced access to the health-related skin metabolome by fast, reproducible and non-invasive WET PREP sampling. Metabolites 11:415 (2021)
2.
De Bernardis Murat, C. & García-Cáceres, C.: Astrocyte gliotransmission in the regulation of systemic metabolism. Metabolites 11:732 (2021)
3.
Föcker, M.* et al.: Evaluation of metabolic profiles of patients with anorexia nervosa at inpatient admission, short-and long-term weight regain—descriptive and pattern analysis. Metabolites 11:7 (2021)
4.
Haslauer, K.E. ; Schmitt-Kopplin, P. & Heinzmann, S.S.: Data processing optimization in untargeted metabolomics of urine using Voigt lineshape model non-linear regression analysis. Metabolites 11:285 (2021)
5.
Huang, J. et al.: Validation of candidate phospholipid biomarkers of chronic kidney disease in hyperglycemic individuals and their organ-specific exploration in leptin receptor-deficient db/db mouse. Metabolites 11:89 (2021)
6.
Kabra, U.* ; Affourtit, C.* & Jastroch, M.: Respiratory parameters for the classification of dysfunctional insulin secretion by pancreatic islets. Metabolites 11:405 (2021)
7.
Kleinwort, K.J.H.* et al.: Mycobacterium avium subsp. paratuberculosis proteome changes profoundly in milk. Metabolites 11:549 (2021)
8.
Maurer, J.* ; Hoene, M.* & Weigert, C.: Signals from the circle: Tricarboxylic acid cycle intermediates as myometabokines. Metabolites 11:474 (2021)
9.
Rus, C.M.* ; Di Bucchianico, S. ; Cozma, C.* ; Zimmermann, R. & Bauer, P.*: Dried Blood Spot (Dbs) methodology study for biomarker discovery in Dried Blood Spot (lsd).  Metabolites 11:382 (2021)
11.
Wahman, R.* ; Sauvetre, A. ; Schröder, P. ; Moser, S.* & Letzel, T.*: Untargeted metabolomics studies on drug-incubated phragmites Australis profiles. Metabolites 11:2 (2021)
12.
Benedetti, E. et al.: Systematic evaluation of normalization methods for glycomics data based on performance of network inference. Metabolites 10:271 (2020)
13.
Faquih, T.* et al.: A workflow for missing values imputation of untargeted metabolomics data. Metabolites 10, 1-23:E486 (2020)
14.
Gmelch, L.* et al.: Comprehensive vitamer profiling of folate mono- and polyglutamates in baker's yeast (Saccharomyces cerevisiae) as a function of different sample preparation procedures. Metabolites 10:301 (2020)
15.
Langenau, J.* et al.: Blood metabolomic profiling confirms and identifies biomarkers of food intake. Metabolites 10:468 (2020)
16.
Miehle, F. et al.: Lipidomic phenotyping reveals extensive lipid remodeling during adipogenesis in human adipocytes. Metabolites 10:217 (2020)
17.
Pann, P. ; Hrabě de Angelis, M. ; Prehn, C. & Adamski, J.: Mouse age matters: How age affects the murine plasma metabolome. Metabolites 10:472 (2020)
18.
Schader, J.F.* et al.: Metabolite shifts induced by marathon race competition differ between athletes based on level of fitness and performance: A substudy of the enzy-magIC study. Metabolites 10:87 (2020)
20.
Chak, C.M. et al.: Ageing investigation using two-time-point metabolomics data from KORA and CARLA studies. Metabolites 9:44 (2019)