PuSH - Publikationsserver des Helmholtz Zentrums München

48 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
1.
Lange Canhos, L. et al.: Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 69, 165-181 (2021)
2.
Bres, E.E.* et al.: Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia 68, 2517-2549 (2020)
3.
Götz, S.* et al.: Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia 69, 346-361 (2020)
4.
Ibach, M.* et al.: A reporter cell system for the triggering receptor expressed on myeloid cells 2 reveals differential effects of disease-associated variants on receptor signaling and activation by antibodies against the stalk region. Glia, DOI: 10.1002/glia.23953 (2020)
5.
Bres, E.E.* et al.: Lrp1 loss in radial glia and their progeny - astrocytic dysfunctions contribute to spontaneous epileptogenesis. Glia 67, E758-E758 (2019)
6.
Chen, M.* ; Sommerfeld, O.* ; Popper, B.* & Sirko, S.: Proliferative activity of reactive astrocytes has a significant impact on post-traumatic behavior. Glia 67, E693-E694 (2019)
7.
Koupourtidou; C. et al.: Tlr2 and Cxcr3 pathways modulate scar formation after traumatic brain injury. Glia 67, E689-E690 (2019)
8.
Pauly, D.* et al.: Glial cells shape the complement homeostasis the healthy and diseased murine retina. Glia 67, E629-E629 (2019)
9.
Sirko, S. ; Schichor, C.* ; Tonn, J.-.* & Götz, M.: Injury-induced plasticity of parenchymal astrocytes in the human cerebral cortex. Glia 67, E693-E693 (2019)
10.
Kunze, C. et al.: Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia 66, 413-427 (2018)
11.
Mattugini, N. et al.: Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia, DOI: 10.1002/glia.23329 (2018)
12.
Caceres, C.G. et al.: Astrocytic UCP2 is required for hypothalamic response to metabolic challenges. Glia 65, E217-E218 (2017)
13.
Dirscherl, P. ; Jastroch, M. ; Vogt-Weisenhorn, D. & Wurst, W.: Mitochondrial function in Pink1 deficient astrocytes. Poster: (2017)
14.
Gruber, T. et al.: Hypercaloric environment triggers chronic remodeling of the hypothalamic vasculature via astroglial HIF1 alpha and VEGF signaling. Glia 65, E511-E511 (2017)
15.
Heimann, G.* et al.: Intrinsic changes in the proliferative program limit astrocyte homeostasis in the aged post-traumatic murine cerebral cortex. Glia 65, E520-E520 (2017)
16.
Kantzer, C.G.* et al.: Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990-1004 (2017)
17.
Lange Canhos, L. ; Falk, S. ; Sirko, S. & Götz, M.: Self-renewal and differentiation potential of reactive astrocytes in vivo. Glia 65, E121-E121 (2017)
18.
Le Thuc, O. et al.: Hypothalamic astrocyte activity state determines systemic glucose metabolism in mice. Glia 65, E218-E218 (2017)
19.
Legutko, B. et al.: Astrocytic leptin and insulin signals interact to maintain systemic metabolic homeostasis. Glia 65, E219-E219 (2017)
20.
Li, M.* ; Hollunder, F.* ; Loy, K.* ; Bareyre, F.* & Sirko, S.: Region-specific reaction of glial cells in the brain parenchyma of adult mice following spinal cord injury. Glia 65, E543-E543 (2017)