PuSH - Publication Server of Helmholtz Zentrum München

32 Records found.
Zum Exportieren der Ergebnisse bitte einloggen.
Lay all publications on this page into basket
1.
Garcia-Maquilon, I.* et al.: PYL8 ABA receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by ABA. J. Exp. Bot. 72, 757-774 (2021)
2.
Kolbert, Z.* ; Lindermayr, C. & Loake, G.J.*: The role of nitric oxide in plant biology: Current insights and future perspectives. J. Exp. Bot. 72, 777-780 (2021)
4.
Wurm, C. & Lindermayr, C.: Nitric oxide signaling in the plant nucleus: The function of nitric oxide in chromatin modulation and transcription. J. Exp. Bot. 72, 808-818 (2021)
5.
Bauer, S. et al.: The isoleucic acid triad: Distinct impacts on plant defense, root growth, and formation of reactive oxygen species. J. Exp. Bot. 71, 4258-4270 (2020)
6.
Escudero-Martinez, C.* et al.: An aphid effector promotes barley susceptibility through suppression of defence gene expression. J. Exp. Bot. 71, 2796-2807 (2020)
7.
Du, B.* et al.: Climate and development modulate the metabolome and antioxidative system of date palm leaves. J. Exp. Bot. 70, 5959-5969 (2019)
8.
Rai, N.* et al.: How do cryptochromes and UVR8 interact in natural and simulated sunlight? J. Exp. Bot. 70, 4975-4990 (2019)
9.
Zhang, J. et al.: Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. J. Exp. Bot. 70, 4521-4537 (2019)
10.
Lindermayr, C. & Durner, J.: Nitric oxide sensor proteins with revolutionary potential. J. Exp. Bot. 69, 3507-3510 (2018)
11.
Astier, J. ; Gross, I. & Durner, J.: Nitric oxide production in plants: An update. J. Exp. Bot. 69, 3401-3411 (2017)
12.
Garcia-Molina, A.* et al.: LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. J. Exp. Bot. 68, 1185-1197 (2017)
13.
Groß, F. ; Rudolf, E.E. ; Thiele, B.* ; Durner, J. & Astier, J.: Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J. Exp. Bot. 68, 2149-2162 (2017)
14.
Kasten, D. et al.: Nitrite is the driver, phytohormones are modulators while NO and H2O2 act as promoters of NO2-induced cell death. J. Exp. Bot. 67, 6337-6349 (2016)
15.
Schäffner, A.: Flavonoid biosynthesis and Arabidopsis genetics: More good music. J. Exp. Bot. 67, 1203-1204 (2016)
16.
Holzmeister, C. et al.: Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J. Exp. Bot. 66, 989-999 (2015)
17.
Kreuzwieser, J.* et al.: Corrigendum: The Venus flytrap attracts insects by the release of volatile organic compounds. J. Exp. Bot. 66, 3429 (2015)
18.
Niederbacher, B. ; Winkler, J.B. & Schnitzler, J.-P.: Volatile organic compounds as non-invasive markers for plant phenotyping. J. Exp. Bot. 66, 5403-5416 (2015)
19.
Kreuzwieser, J.* et al.: The Venus flytrap attracts insects by the release of volatile organic compounds. J. Exp. Bot. 65, 755-766 (2014)
20.
Wittek, F. et al.: Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. J. Exp. Bot. 65, 5919-5931 (2014)