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Abstract: Biological processes exhibiting stochastic fluctuations are mainly modeled using the
Chemical Master Equation (CME). As a direct simulation of the CME is often computationally
intractable, we recently introduced the Method of Conditional Moments (MCM). The MCM is
a hybrid approach to approximate the statistics of the CME solution. In this work, we provide a
more comprehensive formulation of the MCM by using non-central conditional moments instead
of central conditional moments. The modified formulation allows for additional insight into the
model structure and for extensions to higher-order reactions and non-polynomial propensity
functions. The properties of the non-central MCM are analyzed using a model for the regulation
of pili formation on the surface of bacteria, which possesses rational propensity functions.
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1. INTRODUCTION

Gene expression, signal transduction and even cell fate
decisions have been shown to be subject to stochastic
fluctuations [Raser and O’Shea, 2004, Eldar and Elowitz,
2010]. These stochastic fluctuations are often due to the
low abundance of DNAs, mRNAs and proteins [Taniguchi
et al., 2010]. For decades it was assumed that these fluc-
tuations are a nuisance and disturb correct information
processing in cells. However, in recent years it has been
shown that stochastic fluctuations are essential for func-
tioning as well as robustness of many processes [Eldar and
Elowitz, 2010]. Furthermore, fluctuations can be employed
to unravel the underlying signaling mechanisms [Munsky
et al., 2009, 2012].

A multitude of approaches have been proposed to model
stochastic dynamics in biological systems. Discrete-state
continuous-time Markov chains (CTMCs) are the gold
standard as they capture the discreteness of the ensemble
sizes of chemical species (S1, S2, . . . , Sns

) as well as the
discreteness of chemical reactions,

Rj :

ns∑
i=1

ν−ijSi →
ns∑
i=1

ν+ijSi, j = 1, . . . , nr.

The stoichiometric coefficients ν−ij , ν
+
ij and νij = ν+ij − ν

−
ij

denote the number of molecules of species Si consumed,
produced and net produced, respectively, when the reac-
tion Rj takes place. Accordingly, ν−j , ν+j and νj describe
the overall stoichiometry of reaction Rj .

CTMCs describe the time evolution of the ensemble state
Xt = (X1,t, . . . , Xns,t) ∈ N

ns
0 of the species S1, S2, . . . , Sns

as a jump process. Xt remains constant as long as no re-
action occurs. If Rj takes place, the ensemble sizes change
according to the stoichiometry of Rj , Xt → Xt + νj . The
index j of the next reaction and the time to the next
reaction are random with distributions determined by the
propensity functions aj : Nns

0 → R+, j = 1, . . . , nr [Feller,
1940]. The statistics of the process, i.e. the probabilities
p(x|t) = P (Xt = x) that Xt occupies a certain state x at
time t, are described by the chemical master equation
(CME) [van Kampen, 2007],

∂

∂t
p(x|t) =

nr∑
j=1

x≥ν+
j

aj(x−νj)p(x−νj |t)−
nr∑
j=1

aj(x)p(x|t), (1)

in which the inequality constraint x ≥ ν+j ensures positiv-
ity. Associated propensities aj are “proper”, meaning that
if ∃i ∈ {1, . . . , ns} : Xi,t � ν−ij then aj(Xt) = 0.

The CME is a system of linear ordinary differential equa-
tions (ODEs) which describes the dynamics of CTMCs.
Jahnke and Huisinga [2007] derived a closed-form solution
of the CME in the case of monomolecular reactions. If the
process contains nonlinear propensity functions, in gen-
eral, numerical approximations are necessary. A multitude
of approximation methods have been proposed over the
last decades, e.g., error-aware state truncation [Munsky
and Khammash, 2006], inexact integration [Sidje et al.,
2007], product approximations [Jahnke, 2011], approxima-
tion of the CME by the Fokker-Planck equation [Gardiner,

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1729



2011], or modeling of the statistical moments of the CME
solution [Engblom, 2006]. However, these methods often
fail if low- as well as high-copy number species are involved
in the biochemical process.

In recent years, several hybrid methods have been in-
troduced to circumvent these shortcomings. These hy-
brid methods are based on decomposing the system into
fast and slow reactions [Haseltine and Rawlings, 2002],
or low- and high-copy number species [Hellander and
Lötstedt, 2007, Henzinger et al., 2010, Jahnke, 2011, Menz
et al., 2012]. For the latter we recently proposed a gen-
eralization, the method of conditional moments (MCM)
[Hasenauer et al., 2013]. The MCM provides a fully
stochastic description for the low-copy number species
and a moment-based description for the medium/high-
copy number species. Thus, it combines concepts from
hybrid stochastic-deterministic modeling [Jahnke, 2011,
Menz et al., 2012] and moment-based modeling [Engblom,
2006]. We showed that this allows for an improved ap-
proximation quality for common models of transcription-
translation process.

In this manuscript, we generalize the MCM to include
reactions with rates not obeying the law of mass action.
This allows for the consideration of activation and inhi-
bition mechanisms possessing Michaelis-Menten-like char-
acteristics. In addition to this generalization, we state the
MCM in terms of non-central moments. This improves the
readability and interpretability compared to the central
MCM [Hasenauer et al., 2013]. To enhance the MCM
further for systems with nonlinear propensity functions,
we propose the use of Taylor series expansion (TSE) to-
gether with the low-dispersion closure scheme. This ap-
proach is evaluated using a model for PapI regulation in
E. coli [Munsky and Khammash, 2006].

2. APPROACH

Single-molecule fluorescence microscopy techniques, such
as fluorescence in situ hybridization, revealed that the
copy numbers of chemical species spread over several
orders of magnitude. In E. coli, the mean number of a
protein is in general 100- to 1000-fold higher than the
mean number of the corresponding mRNA [Taniguchi
et al., 2010]. Such naturally occurring scale separations
can be exploited to accelerate the simulation of stochastic
biochemical processes. Therefore, species S1, . . . , Sns are
classified as either low- or medium/high-copy number
species. The abundances of low-copy number species are
collected in Yt, while the abundances of medium/high-copy
number species are collected in Zt. Thus, without lost of
generality Xt = (Yt, Zt) and p(x|t) = p(y, z|t).
The CME describes the evolution of the full joint dis-
tribution p(y, z|t). In contrast, the MCM employs the
decomposition

p(y, z|t) = p(z|y, t)p(y|t) (2)

which follows from the multiplication axiom. p(y|t) de-
notes the marginal probability of the low-copy num-
ber species being in state y, while p(z|y, t) denotes the
conditional probability of the medium/high-copy number
species being in state z given that the low-copy number
species are in state y. Using this decomposition, the CME
can be rewritten as

(a) Biological process

∅
off on

τon

τoff

promotor

k γ

mRNA

Model of regulated gene expression:
• promotor can switch between on- and off-state with rates τon and τoff

• promotor in on-state⇒ gene is transcribed to mRNA with rate k
• promotor in off-state⇒ gene is not transcribed
• mRNA is degraded with rate γ

(b) Derivation of chemical master equation
1.) Define biochemical species and biochemical reaction, e.g., promotor state and mRNA.
2.) Define reaction stoichiometries and reaction propensities.
3.) Form evolution equations for the state probabilities.

(c) Chemical master equation (CME)
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· · ·
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on-state dynamics:
∂

∂t
p(r, on) = τon p(r, off)− τoff p(r, on)

+ γ(r + 1)p(r + 1, on)− γrp(r, on)

+ kp(r − 1, on)− kp(r, on)

off-state dynamics:
∂

∂t
p(r, off) = τoff p(r, on)− τon p(r, off)

+ γ(r + 1)p(r + 1, off)− γrp(r, off)

(d) Derivation of conditional moment equation
1.) Select low- and high-copy number species, e.g., DNA state (low) and mRNA (high).

2.) Define of marginal probabilities, e.g., pon =
∑

r p(r, on).

3.) Define conditional moments, e.g., µr,on =
∑

r rp(r|on) and µr2,on =
∑

r r
2p(r|on).

4.) Derive evolution equations for marginal probabilities and conditional moments from
the chemical master equation.

5.) Apply moment closure in case of non-affine reaction propensities.

(e) Method of conditional moments (MCM)
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on-state dynamics:
∂

∂t
pon = τon poff − τoff pon

pon
∂

∂t
µr,on = (µr,off − µr,on)τon poff + (k − γµr,on)pon

pon
∂

∂t
µr2,on= . . .

off-state dynamics:
∂

∂t
poff = τoff pon − τon poff

poff
∂

∂t
µr,off = (µr,on − µr,off)τoff pon − γµr,offpoff

poff
∂

∂t
µr2,off= . . .

Fig. 1. Illustration of the method of conditional mo-
ments using a two-state model for gene expression.
(a) Model of gene expression accounting for two pro-
motor states [Munsky et al., 2012]. (b) Procedure
to derive the CME. (c) CME of the gene expression
model. The discrete state space is visualized along
with the possible transitions. Note that we skip the
dependence on the time t to simplify the notation.
(d) Procedure to derive the conditional moment equa-
tion from the CME. (e) Conditional moment equa-
tion when modeling the promotor state as low-copy
number species and the mRNA as medium/high-copy
number species.
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∂

∂t
p(y, z|t) = −

nr∑
j=1

aj(y, z)p(z|y, t)p(y|t)

+

nr∑
j=1

y≥ν+
j,y

z≥ν+
j,z

aj(y − νj,y, z − νj,z)p(z − νj,z|y − νj,y, t)p(y − νj,y|t).

(3)

This decomposition suggests that the dynamics of p(y|t)
and p(z|y, t) can be modeled separately [Haseltine and
Rawlings, 2005, Hasenauer et al., 2013]. In the MCM, the
distribution of the low-copy number species is described in
terms of marginal probabilities,

p(y|t) =
∑
z≥0

p(y, z|t). (4)

For medium/high-copy number species, the non-central
moments of p(z|y, t) are considered,

µI,z(y, t) = Ez
[
ZI
∣∣ y, t] =

∑
z≥0

zIp(z|y, t), (5)

with I being a non-negative integer-valued vector of length
ns,z and ZI :=

∏ns,z

i=1 Z
Ii
i . The conditioning on y can

be important if transitions between different low-copy
number states are slow. The marginal probabilities of
discrete states together with the corresponding conditional
moments can be used to determine the overall moments of
the process, µ̄I,z(t), i.e. the moments independent of the
stochastic states, via

µ̄I,z(t) = E
[
ZI |t

]
=
∑
y≥0

µI,z(y, t)p(y|t).

In the following, we provide exact and approximate evolu-
tion equations for p(y|t) and µI,z(y, t). Figure 1 provides
a visual outline of the method.

3. NON-CENTRAL CONDITIONAL MOMENT
EQUATIONS

Upon decomposition of state vector, x = (y, z), evolu-
tion equations for marginal probabilities of low-abundance
species, p(y|t), as well as non-central moments of high-
abundance species conditioned on the state of the low-
abundance species, µI,z(y, t), have to be determined.
Therefore, a governing equation for expectation of an arbi-
trary polynomial test-function T (Z) is derived to provide
MCM equations as special cases.

Lemma 1. Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a proper
CME (3) (∀x � ν−j : aj(x) = 0), then, for any polynomial

test-function T : Nnz
0 × R+ → R,

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

nr∑
j=1

y≥ν+
j,y

Ez[T (Z + νj,z)aj(y − νj,y, Z)| y − νj,y, t] p(y − νj,y|t)

−
nr∑
j=1

Ez[T (Z)aj(Z, y)| y, t] p(y|t).

(6)

Note that Lemma 1 is only valid if the expectation
Ez[T (Z)aj(Z, y)| y, t] exists. This is generally true for rea-
sonable models of biological processes.

Proof. The time derivative of Ez[T (Z)| y, t] p(y|t) is

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

∂

∂t

∑
z≥0

T (z)p(z|y, t)p(y|t)


=
∑
z≥0

T (z)
∂

∂t
p(z, y|t) +

∑
z≥0

p(z, y|t) ∂
∂t
T (z).

The second term vanishes as the time derivative of T (z)
is zero. Similar to the proof by Hasenauer et al. [2013],
∂
∂tp(z, y|t) is substituted according to the CME (3), the
order of summations is changed, and z is replaced by
z + νj,z in the first sum to obtain

∂

∂t
(Ez[T (Z)| y, t] p(y|t)) =

nr∑
j=1

y≥ν+
j,y

∑
z≥ν−

j,z

T (z + νj,z)aj(y − νj,y, z)p(z|y − νj,y, t)

× p(y − νj,y|t)−
nr∑
j=1

∑
z≥0

T (z)aj(y, z)p(z|y, t)p(y|t).

The lower bound z ≥ ν−j,z can be replaced by z ≥ 0

as for z � ν−j,z : aj(z) = 0 (due to propensities being

proper). Utilizing the definition of conditional expectation
Ez[T (z)| y, t] =

∑
z≥0 T (Z)p(z|y, t), the expression above

simplifies to the evoluation equation stated in Lemma 1,
which concludes the proof. �

Setting T (Z) to 1 and ZI , Lemma 1 yields the governing
equations for p(y|t) and µI,z(y, t) respectively.

Theorem 2. Let p(y, z|t) = p(z|y, t)p(y|t) satisfy a proper
CME (3), the evolution equations for marginal prob-
abilities, p(y|t), and non-central conditional moments,
µI,z(y, t), are given by the system

∂

∂t
p(y|t) = −

nr∑
j=1

Ez[aj(Z, y)| y, t] p(y|t)

+

nr∑
j=1

y≥ν+
j,y

Ez[aj(y − νj,y, Z)| y − νj,y, t] p(y − νj,y|t),

p(y|t) ∂
∂t
µI,z(y, t) + µI,z(y, t)

∂

∂t
p(y|t) =

nr∑
j=1

y≥ν+
j,y

Ez
[
aj(y − νj,y, Z)(Z + νj,z)

I
∣∣ y − νj,y, t]

× p(y − νj,y|t)−
nr∑
j=1

Ez
[
aj(Z, y)ZI

∣∣ y, t] p(y|t).
(7)

The MCM equations can be written for moments of
arbitrary order. In contrast to the central conditional
moment equations [Hasenauer et al., 2013], no distinc-
tion between first and higher-order moments is neces-
sary, yielding a more compact set of equations. Also
this presentation of the MCM is a generalization of the
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central MCM since it removes the assumption that the
propensity functions should allow for a decomposition of
the form aj(x, t) = c gj(y, t)hj(z, t). Therefore, the non-
central MCM provides a simpler and more general formu-
lation and thus facilitates further investigations.

The resulting set of evolution equations is a DAE system.
Initial conditions for p(y|t), µI,z(y, t), ṗ(y|t) and µ̇I,z(y, t)
can be calculated via (7) given that ∀y : p(y|t0) 6= 0. If
this is not fulfilled, the procedure introduced by Hasenauer
et al. [2013] can be adopted.

The simulation of the conditional moment equations re-
quires the evaluation of expectations Ez[aj(Z, y)| y, t] and
Ez
[
aj(Z, y)ZI

∣∣ y, t]. This can be done by employing the
Taylor series expansion of the propensity function aj(z, y).
More specifically, since the expectation with respect to
the random variable Z is sought, aj(z, y) is merely ex-
panded with respect to z. In principle, any expansion
point can be selected for the TSE, however, the vector
of conditional means of z, µ′z(y, t) =

∑
z≥0 z p(z|y, t) =

(µe1,z(y, t), . . . , µens ,z
(y, t)), is considered in the following:

aj(z, y) = aj(µ
′
z(y, t), y)

+

ns,z∑
k=1

∂aj(µ
′
z(y, t), y)

∂zk
(zk − µek,z(y, t))

+
1

2

ns,z∑
k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl
(zk − µek,z(y, t))(zl − µel,z(y, t))

+ . . . . (8)

The expectation Ez[aj(Z, y)| y, t] follows as

Ez[aj(Z, y)| y, t] = aj(µ
′
z(y, t), y)

+
1

2

ns,z∑
k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl
Cek+el,z(y, t) + . . . ,

(9)

in which ei denotes the ith unit vector and CI,z(y, t) =∑
z≥0 (z − µ′z(y, t))

I
p(z|y, t) represent the central mo-

ments. The central moments can be replaced by their
equivalent expressions in terms of non-central moments,
e.g., Cek+el,z(y, t) = µek+el,z(y, t) − µek,z(y, t)µel,z(y, t).
In case the TSE (9) is finite, Ez

[
aj(Z, y)ZI

∣∣ y, t] can be
evaluated in a similar manner by writing the TSE of
aj(Z, y)ZI . However, if the TSE (9) is infinite, or in-
tractably high-order, it may be truncated at a specific
order N . This truncation introduces a degree of freedom in
choosing either of the following approaches for evaluating
Ez
[
aj(Z, y)ZI

∣∣ y, t].
Truncate-multiply approach. To approximate the expec-
tation Ez

[
aj(Z, y)ZI

∣∣ y, t], first the TSE of aj(Z, y) (8) is

truncated at order N , and then it is multiplied by ZI . The
expectation of the resulting product is

Ez
[
aj(Z, y)ZI

∣∣ y, t] = aj(µ
′
z(y, t), y)µI,z(y, t)

+

ns,z∑
k=1

∂aj(µ
′
z(y, t), y)

∂zk
Ez
[
(Zk − µek,z(y, t))ZI

∣∣ y, t]
+

1

2

ns,z∑
k,l=1

∂2aj(µ
′
z(y, t), y)

∂zk∂zl

× Ez
[
(Zk − µek,z(y, t))(Zl − µel,z(y, t))ZI

∣∣ y, t]+ . . . .
(10)

The expectation terms in (10) can easily be expressed in
terms of non-central moments.

Multiply-truncate approach. In the multiply-truncate
approach, the order of operations is changed. First ZI

is multiplied by aj(Z, y), then the TSE of the product
aj(Z, y)ZI is obtained and, if necessary, truncated, yield-
ing the expectation

Ez
[
ZIaj(Z, y)

∣∣ y, t] = (µ′z(y, t))
I
aj(µ

′
z(y, t), y)

+
1

2

ns,z∑
k,l=1

∂2
(

(µ′z(y, t))
I
aj(µ

′
z(y, t), y)

)
∂zk∂zl

Cek+el,z(y, t)

+ . . . .
(11)

In the truncate-multiply approach, if the TSE is truncated
at order N , (10) contains moments up to order N +

∑
i Ii,

whereas in the multiply-truncate approach, with the TSE
of orderN , (11) contains moments up to orderN . Thus, for
the multiply-truncate approach it may be more plausible
to have the truncation order N equal to or greater than the
moment order, i.e. N ≥

∑
i Ii. In this way, the evolution

equation for a moment µI,z(y, t) depends on moments of
the same order.

4. CLOSURE OF THE CONDITIONAL MOMENT
EQUATIONS

The evolution equations for moments up to order M ,
i.e. ∀I :

∑
i Ii ≤ M , in general depend on moments of

orders > M . To simulate the conditional moment equa-
tions, these higher-order moments have to be approxi-
mated using moment closure. Also, if the propensities
are non-polynomial, their TSEs are generally infinite and
need to be truncated. Accordingly, the accuracy of con-
ditional moment equations is determined by (1) the error
introduced by truncating Taylor series of the propensity
functions aj(z, y), and (2) the error introduced by the
moment closure scheme. In the following, these two sources
of error are discussed for polynomial and non-polynomial
propensity functions.

4.1 Polynomial propensities

If the kinetics obey the law of mass action, all propensities
are polynomial functions and their TSEs are finite and
their truncation is not necessary. However, higher-order
moments still appear.

Under certain conditions the higher-order moments cancel
out, yielding a closed set of equations [Hasenauer et al.,
2013]. However, in general, closure schemes have to be em-
ployed. Moment closure schemes approximate higher-order
moments as functions of the lower-order moments, e.g.,
using distributional assumptions [Engblom, 2006, Singh
and Hespanha, 2011]. For instance, the simplest and also
most commonly used moment closure is low-dispersion clo-
sure which relies on the assumption that the distribution
is tightly clustered around the mean, implying that the
higher-order central moments are negligible. Accordingly,
all higher-order central moments are set to zero,

∀I with
∑
i

Ii > M : CI,z(y, t) = 0. (12)
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In case of polynomial propensities, different moment clo-
sure schemes can be used with either of the truncate-
multiply and multiply-truncate approaches. The error of
the approximation is then directly related to the validity
of the assumptions made by the closure.

4.2 Non-polynomial propensity functions

In case of non-polynomial propensity functions, the corre-
sponding TSEs are infinite and need to be truncated. In
this case, both the errors introduced by the truncation of
the TSE and by the moment closure affect the approxima-
tion quality of the MCM.

TSEs are truncated by discarding higher-order terms in (9)
and (10) or (11). In the truncate-multiply approach,
higher-order terms in (9) and (10) are of different natures,
i.e. the former are the higher-order central moments while
the latter are combinations of non-central moments. Thus,
setting them to zero implies different, and inconsistent, as-
sumptions about the moments. However, in the multiply-
truncate approach, truncations of the TSEs (9) and (11)
both correspond to the same assumption, i.e. that the
higher-order central moments are zero. This is conceptu-
ally similar to the low-dispersion moment closure, which
also sets higher-order central moments to zero. Hence, in
the approximation of conditional moment equations with
non-polynomial propensities, the low dispersion closure to-
gether with the multiply-truncate approach is a promising
choice as it ensures consistency.

Interestingly, it can be shown that using the low-dispersion
closure, the truncate-multiply approach is identical to the
multiply-truncate approach, given that the order of the
TSE truncation at least equals the moment order, i.e.
N ≥ M . However, the two approaches are different if
N < M , or if another moment closure scheme is applied.

5. EXAMPLE: PAPI REGULATION MODEL

In this section, the performance of non-central MCM is
assessed using a biological system that describes the regu-
lation of Pap pili formation on the surface of E. coli [Mun-
sky and Khammash, 2006]. This biological process in-
volves low- as well as medium/high-copy number species.
Therefore, it is challenging for simulation methods that
do not account for the differences in the abundance of
the species. Furthermore, it demands handling of non-
polynomial propensity functions.

Several simulations based on MCM with different setups
are carried out and the results are compared to the
results obtained by finite state projection (FSP). As shown
by Munsky and Khammash [2006], the results of FSP can
be assumed to be exact for this problem.

5.1 Biological system

The PapI regulation model (Figure 2) comprises a pap
operon and two regulatory proteins. The regulatory pro-
tein LRP can reversibly bind to either or both of the bind-
ing sites on the pap operon. The states g1 to g4 represent
the four possible configurations of the pap operon. Pili
production can only take place if the operon is in state g2.
Protein PapI decreases the unbinding rate of LRP from

g1

g2
g3

g4

LRPPapI

⌧2 ⌧2

⌧1 ⌧1�1(r) �1(r)

�2(r) �2(r)

Fig. 2. Schematic of the PapI regulation model. Arrows
represent the binding and unbinding of LRP to/from
the operon. Dotted arrows indicate the influence of
PapI on the reaction rates.

Table 1. Reactions and reaction propensities
for the PapI regulation model.

reaction number stoichiometry rate

R1 g1 + l→ g2 τ1 = c1
R2 g2 → l + g1 λ1 = c3 − c4 r

r+1

R3 g1 + l→ g3 τ1 = c1
R4 g3 → l + g1 λ2 = c5 − c6 r

r+1

R5 g2 + l→ g4 τ2 = c2
R6 g4 → l + g2 λ2 = c5 − c6 r

r+1

R7 g3 + l→ g4 τ2 = c2
R8 g4 → l + g3 λ1 = c3 − c4 r

r+1

R9 g2 → g2 + r kr
R10 r → ∅ γr

the operon, and therefore establishes a positive feedback
loop for the production of pili. The total number of LRP
molecules (denoted by l) is constant, while the count of
PapI molecules (denoted by r) is variable. Reactions and
kinetic rates of the model are provided in Table 1.

The operon states are modeled as low-abundance species
as there is only a single operon. PapI and LRP proteins
are found in relatively larger amounts, therefore, they
are considered as medium/high-copy number species and
represented by the moments of their distributions. Fur-
thermore, to obtain the MCM equations, the nonlinear
kinetic rates, i.e. those in reactions R2, R4, R6 and R8,
should be approximated as polynomials by means of TSE.

5.2 Simulation study

To analyze the impact of the approximation errors of
moment closure and truncation of TSE (in either of the
truncate-multiply and multiply-truncate approaches) on
the accuracy of the MCM simulation, several simulations
are carried out. We use the notation MCMi/j to refer to
different simulations where i denotes the highest moment
order (previously mentioned as M) and j denotes the
order of the TSE (previously mentioned as N). For all the
simulations, parameter values (c1, c2, c3, c4, c5, c6, kr, γr) =
(1, 0.01, 2.5, 2.25, 1.2, 0.2, 10, 1) and initial conditions l =
100, r = 5, and p(g1) = 1 are used.

Using the truncate-multiply approach (Figure 3), we find
that all MCM simulations generally agree with the FSP in
resolving marginal probabilities and conditional moments.
However, as Figure 4 shows, there is no consistent trend in
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Fig. 3. Marginal probabilities of states of the pap operon
(left) and conditional means and 1-σ intervals of PapI
(right) for FSP, MCM3/2, MCM4/2, and MCM4/3
with the truncate-multiply approach.
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molecules predicted by different MCM simulations
with the truncate-multiply approach.

the impact of the moment order and the truncation order
on the accuracy of the simulation results.

The results for the overall mean of PapI (Figure 4) suggest
that, for most cases, applying a truncation order smaller
than the moment order leads to improved approximation
quality. For this example, the TSE of order 2 yields the
smallest error. Although increasing the moment order
improves the results when the truncation order is equal
to/greater than two, this is not always the case.

For instance, MCM1/1 performs better than MCM2/1,
MCM3/1, and MCM4/1 (Figure 4). Relative errors in Fig-
ure 4 are computed with respect to FSP simulation, e.g.,
errorMCM2/2 = abs(E[r|t]MCM2/2 − E[r|t]FSP)/E[r|t]FSP.

The same study is repeated for the multiply-truncate
approach. In this approach, the highest moment order
that appears in the MCM equations corresponds to the
minimum of the truncation order and the moment order,
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molecules predicted by different MCM simulations
with the multiply-truncate approach.

i.e. min(M,N). Therefore, given that j < i, all simulations
MCMi/j with the same j are identical. Therefore, only the
effect of the truncation order on the accuracy of the MCM
simulation has to be investigated. Unfortunately, we again
do not find a consistent trend (Figure 6).

To summarize, this example illustrates how MCM can be
used to approximate the statistics of stochastic processes
with non-polynomial reaction propensities. Surprisingly,
no consistent trend was found in the impact of the order
of TSE and the order of moment closure on the accuracy
of the MCM simulation when low dispersion closure was
used.

6. DISCUSSION

In this work, we presented the non-central conditional
moment equations, a reformulation and extension of the
central MCM [Hasenauer et al., 2013]. Being a hybrid
simulation method for systems of stochastic dynamics, the
MCM combines stochastic and moment-based descriptions
depending on copy-numbers of species. Reformulation in
terms of non-central moments facilitated the extension of
the MCM to include reactions with non-polynomial kinetic
rates. We proposed the use of Taylor series expansion
for the approximation of non-polynomial propensity func-
tions. As the truncation of the TSE introduces degrees of
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freedom, we compared two alternative approaches for the
approximation of the conditional moment equations.

To evaluate the performance of non-central MCM, a model
for regulation of Pap pili formation on the surface of E. coli
was analysed. Our study demonstrated that non-central
MCM can handle non-polynomial propensity functions by
means of Taylor series expansion. Surprisingly, we found
that increasing the order of Taylor series expansion does
not always improve the accuracy of simulation.

In situations where the low-dispersion assumption is not
physically plausible, the compatibility of more sophisti-
cated closure techniques [Gillespie, 2009, Singh and Hes-
panha, 2011] with the TSE has to be analyzed. Also, to
further enhance the approximation quality, approximation
approaches such as sigma-point expansion methods, in-
stead of Taylor series expansion, might be used.

If all propensities are rational, the approach introduced
by Milner et al. [2011] for moment equations can also
be adapted for the MCM. In this approach, a polynomial
system is obtained by multiplying the original system by
the product of the propensity denominators, and the TSE
can be avoided.

The approximation of the statistics of stochastic processes
by the MCM can be used in a variety of applications.
In particular, parameter estimation, experimental design
and control of stochastic processes can be rendered more
efficient [Zechner et al., 2012].
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