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Abstract 

Background: MicroRNAs (miRNAs) play an important role in cancer biology. Neoadjuvant radiochemotherapy 
followed by surgery is a standard treatment for locally advanced esophageal squamous cell carcinoma (ESCC). 
However, a subset of patients do not respond. We evaluated whether miRNA profiles can predict resistance to 
radiochemotherapy.

Methods: Formalin‑fixed, paraffin‑embedded pretherapeutic biopsies of patients treated by radiochemotherapy 
followed by esophagectomy were analyzed. The response was determined by histopathological tumor regression 
grading. miRNA profiling was performed by microarray analysis (Agilent platform) in 16 non‑responders and 15 
responders. Differentially expressed miRNAs were confirmed by real‑time quantitative PCR (qRT‑PCR) in an expanded 
cohort of 53 cases.

Results: The miRNA profiles within and between non‑responders and responders were highly similar (r = 0.96, 0.94 
and 0.95). However, 12 miRNAs were differentially expressed (> twofold; p ≤ 0.025): non‑responders showed upregu‑
lation of hsa‑miR‑1323, hsa‑miR‑3678‑3p, hsv2‑miR‑H7‑3p, hsa‑miR‑194*, hsa‑miR‑3152, kshv‑miR‑K12‑4‑3p, hsa‑
miR‑665 and hsa‑miR‑3659 and downregulation of hsa‑miR‑126*, hsa‑miR‑484, hsa‑miR‑330‑3p and hsa‑miR‑3653. 
qRT‑PCR analysis confirmed the microarray findings for hsa‑miR‑194* and hsa‑miR‑665 (p < 0.001 each) with AUC 
values of 0.811 (95% CI 0.694–0.927) and 0.817 (95% CI 0.704–0.930), respectively, in ROC analysis.

Conclusions: Our results indicate that miRNAs are involved in the therapeutic response in ESCC and suggest that 
miRNA profiles could facilitate pretherapeutic patient selection.
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Background
Esophageal squamous cell carcinoma (ESCC) is one of 
the most aggressive tumor types with an extremely high 
lethality and low survival rates. Despite the increas-
ing incidence of esophageal adenocarcinoma (EAC), 
especially in Western countries, ESCC remains the pre-
dominant tumor type worldwide and has a substantial 
prevalence in Europe and North America [1, 2]. Mul-
timodal treatment, usually consisting of neoadjuvant 
radiochemotherapy (RCT) followed by surgery, leads 
to a survival benefit compared with surgery alone for 
locally advanced ESCC [3–7]. However, many patients 
do not show a measurable tumor response to neoadju-
vant therapy, and the prognosis of these patients in the 
combined setting may be even worse than with surgery 
alone due to the side effects of cytotoxic treatment and 
delay of intervention [8–10]. Conversely, definitive radio- 
or radiochemotherapy represents an attractive alternative 
option for patients who are not suitable for major surgi-
cal therapy due to their medical status [11]. Therefore, 
pretherapeutic identification of patients who would not 
respond to neoadjuvant or definitive radiotherapy is of 
major interest for clinical decision-making and individu-
alizing therapy.

Analysis of microRNAs (miRNAs) has strong potential 
for the identification of novel prognostic or predictive 
biomarkers. miRNAs are single-stranded, non-coding, 
highly conserved RNA molecules with a length of 20–25 
nucleotides [12, 13]. miRNAs regulate the expression 
of genes via highly specific binding on messenger RNA 
(mRNA). Since the first description of miRNAs approxi-
mately 20  years ago, more than 17,000 miRNAs have 
been detected in various species, and 1900 of them are 
observed in the human genome. Importantly, more than 
half of all genes of the genome are suspected to be regu-
lated by miRNAs, indicating the importance of miRNAs 
for the control of growth, differentiation and function of 
cells [12, 14, 15]. In addition to neurodegenerative dis-
eases, infections and immune-related diseases, cancer 
has been the most prominent of human diseases with a 
clear role for miRNA regulation since the beginning of 
miRNA research. On this subject, miRNAs are involved 
in carcinogenesis, cancer progression, and therapy resist-
ance and response [16, 17].

Although several studies have investigated the impact 
of miRNA expression on the response to cytotoxic 
treatment in esophageal cancer in  vitro and ex  vivo in 
patient tissue collections (for review see [18]), to date, 
no constant results or reproducible tissue-generated data 
regarding differentially expressed miRNAs have been 
published.

We present a microarray-based approach to iden-
tify miRNA profiles that differ between responders and 

non-responders in pretherapeutic biopsies from patients 
with ESCC after neoadjuvant RCT and surgery. Microar-
ray data were confirmed by quantitative RT-PCR for dif-
ferentially expressed miRNAs in an expanded cohort.

Methods
Patient characteristics and tissue specimens
FFPE tumor samples from 53 patients with locally 
advanced esophageal squamous cell carcinoma were 
investigated. The patients were treated between 1996 
and 2009 at the Department of Radiation Oncology and 
Department of Surgery at the Klinikum Rechts der Isar 
der Technischen Universität München, Germany. The 
median age of the patients was 57.3 (range: 29–71 years) 
with 11 female (20.8%) and 42 male patients (79.2%), 
reflecting the expected gender distribution for this tumor. 
Tumor differentiation was G2 (moderately differentiated) 
in 20 cases (37.7%) and G3 (poorly differentiated) in 33 
cases (62.3%).

Preoperative RCT consisted of simultaneously applied 
cisplatin (15 patients) or oxaliplatin (38 patients), and 
5-fluorouracil based chemotherapy and external-beam 
radiotherapy radiation with overall doses of 30–60  Gy, 
predominantly 45  Gy (45 patients; single doses of 
1.8–2  Gy) [8, 19]. Surgery was performed 4–6  weeks 
thereafter with esophagectomy as described in detail 
previously [8, 20]. Tumor regression grade (TRG) was 
histologically assessed in posttreatment resection speci-
mens in a standardized way by microscopic evaluation 
of the complete previous tumor bed, as described previ-
ously [8, 21]. Cases with no residual tumor were classified 
as “responders” (TRG 1a) and cases with > 50% residual 
tumors were classified as “non-responders” (TRG 3). 
Tumors with incomplete or partial regression (1–50% 
residual tumors) were not included in this study because 
the data about the prognostic impact of incomplete and 
partial regression in the literature do not show consist-
ent results [8, 22]. Postoperative histopathological find-
ings after neoadjuvant radiochemotherapy are given in 
Table  1. Overall survival (OS) was calculated from the 
day of surgery to death.

Preoperative biopsies from 31 patients containing suf-
ficient tumor material was used for microarray analysis. 
Confirmation by quantitative RT-PCR (qRT-PCR) was 
performed on an extended cohort including the cases 
from the microarray analysis and biopsy tissue from 
another 22 patients.

RNA extraction
The tumor cell content of a minimum of 80% of the 
biopsies was required, and manual microdissection was 
performed to enrich the tumor content when necessary. 
Total RNA, including small RNAs, was extracted using 
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the FFPE miRNeasy Kit (Qiagen, Hilden, Germany). For 
each sample, between 2 and 10 unstained 10-µm sec-
tions were manually microdissected after deparaffiniza-
tion, and RNA was extracted using 150 µl of proteinase K 
digestion buffer according to the manufacturer’s instruc-
tions. Total RNA was measured using the NanoDrop 
photospectrometer (NanoDrop, Wilmington, DE, USA) 
and was further processed if the A260/A280 ratio was 
≥ 1.8 and the A260/A230 ratio was ≥ 1.4. All samples 
were analyzed using RNA 6000 Nano LabChip Kits (Agi-
lent Technologies).

Preparation of cyanine‑3 labeled miRNA and microarray 
hybridization
The total RNA samples were spiked with in vitro-synthe-
sized oligonucleotides (MicroRNA Spike-In Kit, Agilent 
Technologies). The spiked total RNA was treated with 
alkaline calf intestine phosphatase (CIP). Subsequently, 
the dephosphorylated RNA was labeled (miRNA Com-
plete Labeling and Hyb Kit, Agilent Technologies) using 
the T4 RNA ligase, incorporating Cyanine-3-pCp. Next, 
100  ng of total RNA per sample were introduced into 
the labeling reaction. After clean-up, Cyanine-3-labeled 
miRNA samples were prepared for one-color-based 
hybridization (Complete miRNA Labeling and Hyb Kit; 
Agilent Technologies). Each Cyanine-3-labeled miRNA 
sample was hybridized for 20  h at 55  °C on separate 
Human miRNA Microarrays, Release 16.0 (Agilent Tech-
nologies; AMADID 031181, 8 × 60 K format), containing 

probes for 1205 human and 144 human viral miRNAs. 
Thereafter, the microarrays were washed with increasing 
stringency using Gene Expression Wash Buffers (Agi-
lent Technologies) followed by drying with acetonitrile 
(SIGMA). Fluorescent signal intensities were detected 
using Scan Control A.8.4.1 Software (Agilent Technolo-
gies) in the Agilent DNA Microarray Scanner.

Quantitative RT‑PCR
For validation of the microarray data, differentially 
expressed miRNAs were investigated by qRT-PCR using 
the miRCURY LNA™ Universal RT microRNA PCR 
system (Exiqon A/S, Denmark). Details regarding the 
commercially available miRNA primer sets used and 
sequences for individual Custom PCR primer sets are 
given as Additional file 1. The cDNA samples were pre-
pared using 20 ng of total RNA and the Universal cDNA 
synthesis kit (Exiqon A/S, Vedbaek, Denmark) according 
to the manufacturer’s recommendations. A 10-µl volume 
of a 50× dilution of cDNA was used in each of the real-
time PCR reactions with  SYBR® green master mix and 
miRNA LNA™ PCR primer sets (both from Exiqon A/S) 
following the manufacturer’s instructions. All samples 
were run in triplicate. Real-time PCR was carried out 
on a Light Cycler 480 instrument (Roche Diagnostics), 
and the arithmetic mean of each triplicate measurement 
was used for further analysis. The relative quantification 
of miRNA expression was performed using a non-linear 
algorithm (second derivative maximum, Roche Light-
Cycler Software V1.5) with a standard curve for each 
individual assay to calculate and correct for the amplifi-
cation efficiency and using SNORD 44 as a reference for 
normalization.

To minimize the data variation in separate runs, a pool 
of 10 non-tumor samples was examined on the same 
runs. A no-reverse-transcriptase control (no RT) was 
included for each run of real-time RT-PCR to ensure that 
the RNA samples were not contaminated with genomic 
DNA.

Statistical analysis
For the microarray analysis, the software tools Feature 
Extraction 10.7.3.1 and GeneSpring GX 11.5 were used 
for quality control, statistical data analysis, miRNA anno-
tation and visualization. A detailed description of the 
statistical workup of the microarray data is given as Addi-
tional file 2.

For statistical analysis of the confirmation experiments, 
SPSS software (IBM SPSS statistics version 24 was used. 
The associations between groups of patients were given 
in cross tabs, and differences were determined using χ2-
test. Comparisons between groups were performed using 
the non-parametric Mann–Whitney U test and results 

Table 1 Postoperative findings after  neoadjuvant 
radiochemotherapy

Factor n %

Tumor regression grade

 TRG 1a 26 49

 TRG 3 27 51

UICC ypT category

 ypT0 25 47

 ypT1 2 4

 ypT2 3 6

 ypT3 18 34

 ypT4 5 9

Lymph node status

 ypN0 32 60

 ypN1 21 40

Distant metastasis

 M0 51 96

 M1 2 4

Resection status

 R0 39 74

 R1 14 26
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were adjusted for multiple testing using the Bonfer-
roni correction, where appropriate. Categorization into 
high and low miRNA-expressing tumors was conducted 
according the results of ROC analysis (non-response as 
reference). For survival analysis, the log-rank tests and 
Kaplan–Meier curves were used, as well as Cox propor-
tional hazard tests for multivariate analysis. All tests were 
two-sided, and the significance level was set to p < 0.05 or 
lower, in line with the correction for multiple testing.

Results
Microarray analysis
Thirty-one biopsy samples (16 responders and 15 non-
responders) passed the quality check and could be used 
for microarray analysis. In general, the miRNA expres-
sion profiles in the ESCC biopsies examined were quite 
similar, both within the group of responders and non-
responders: Correlation coefficients (r) within the group 
of responders ranged from 0.93 to 0.98 (average r = 0.96) 
and within the group of non-responders from 0.85 to 0.98 
(average r = 0.94). Moreover, the miRNA profiles were 
rather similar between responders and non-responders 
with correlation coefficients ranging from 0.88 to 0.98 
(average r = 0.95). The correlation (r) of the samples is 
visualized in a heat-map (Fig. 1).

Despite the quite homogeneous miRNA expression 
profile in pretherapeutic biopsies, a small number miR-
NAs fulfilled the strict predefined criteria for being des-
ignated as differentially expressed between responders 
and non-responders. The following eight miRNAs were 
upregulated in non-responders: hsa-miR-1323, hsa-miR-
3678-3p, hsv2-miR-H7-3p, hsa-miR-194*, hsa-miR-3152, 
kshv-miR-K12-4-3p, hsa-miR-665 and hsa-miR-3659. By 
contrast, the four miRNAs hsa-miR-126*, hsa-miR-484, 
hsa-miR-330-3p and hsa-miR-3653 were downregulated 
in non-responders compared with that in responders 
(Table 2).

The complete list of analyzed miRNAs, their expression 
levels and respective p values for the comparison of the 
expression levels between responders and non-respond-
ers are given in Additional file 3.

Confirmation by single real‑time RT PCR
Real-time quantitative PCR for the confirmation of 
microarray analysis findings was performed for 12 dif-
ferentially expressed miRNAs in the expanded col-
lective of 53 biopsy samples. However, four miRNAs 
(hsa-miR-1323, hsa-miR-3678-3p, hsa-miR-3152 and 
kshv-miR-k12-4-3p) could be detected at only very low 
levels by qRT-PCR, making valid quantification impos-
sible, and the miRNAs hsa-miR-126*, hsa-miR-484, 
hsa-miR-330-3p, hsa-miR-3653, hsa-miR-194*, hsv2-
miR-H7-3p, hsa-miR-665 and hsa-miR-3659 could be 

constantly detected in all samples and quantified. For 
miR-194* and miR-665 but not the remaining miRNAs, 
the microarray results could be confirmed with signifi-
cantly higher miRNA levels in non-responders than in 
responders (median quantitative gene expression lev-
els: 0.11 vs. 0.03, respectively, and 0.29 vs. 0.06, respec-
tively; p < 0.001 each with a significance level of p < 0.006 
after correction for multiple testing, Fig. 2). ROC analy-
sis showed AUC values of 0.811 (95% CI 0.694–0.927) 
for miR-194* and 0.817 (95% CI 0.704–0.930) for miR-
665 for the non-response to RCTX. The combination of 
miR-194* and miR-665 (sum of relative values in relation 
to the median expression level) had only a slightly bet-
ter AUC value of 0.824 (95% CI 0.713–0.935). Crosstab 
analysis using the cut-offs defined by ROC analysis con-
firmed the association between high levels of miR-194* 
and miR-665 and non-response to neoadjuvant RCTX 
(p < 0.001 and p = 0.006; Table  3). Interestingly, for the 
miRNAs that were downregulated in non-responders, 
microarray results could not be confirmed in single qRT-
PCR analysis.

Survival analysis
Responders showed significantly better overall survival 
(OS) than non-responders (p < 0.001), and responders 
significantly more often had lower ypT categories and the 
absence of lymph node or distant metastases than non-
responders (p < 0.001 each). Higher levels of miR-194* 
and miR-665 defined by ROC analysis were associated 
only in trend with a worse outcome of the patients in 

Fig. 1 Correlation of miRNA expression. Heat‑map plot for the 
correlation coefficients r of the miRNA expression profiles among 
all samples analyzed by microarray analysis [red color r = 1.00 (best), 
green color r = 0.85 (worst)]
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univariate analysis (p = 0.052 and p = 0.197, respectively; 
Fig.  3). In multivariate analysis encompassing the rel-
evant prognostic pathological parameters and miRNAs, 
only the ypN category emerged as constant independent 
prognostic factors (HR: 7.561; 95% CI 1.6–35.1; p = 0.010; 
Table 4).

Comparison with previous miRNA studies of the response 
to neoadjuvant treatment
Ex vivo and in vitro studies with expression analyses of 
single miRNAs and miRNA microarray analyses have 
already been used by others to identify miRNA profiles 

in esophageal carcinomas that are potentially predic-
tive for the response or resistance to chemo- or radio-
chemotherapy [23–32]. There is considerable variety 
in the platforms used, tissue analyzed (i.e., FFPE vs. 
fresh (unfixed) tissue), case collection or neoadjuvant 
treatment. We screened the results of our microarray 
analysis to compare the results of these studies with 
the present investigation. An overview of miRNAs that 
have been described as differentially expressed between 
responding and non-responding esophageal carcino-
mas in relation to the results of the present work is 
given in Additional file 4.

Discussion
In this tissue-based study, we could demonstrate the 
feasibility to apply microarray-based miRNA profil-
ing on the FFPE tissue of ESCC prior to neoadjuvant 
RCT. Although the tumors harbored very homogeneous 
miRNA expression profiles in general, we could identify 

Table 2 Differentially expressed miRNAs as  identified 
by  microarray analysis in  non-responders compared 
with that in responders

miRNA Regulation 
in non‑
responders

Fold chance p value

miR‑3678‑3p Upregulated 10.774 0.022

miR‑3152 Upregulated 5.732 0.018

kshv‑miR‑K12‑4‑3p Upregulated 3.211 0.006

miR‑1323 Upregulated 22.143 0.004

miR‑665 Upregulated 2.527 0.004

hsv2‑miR‑H7‑3p Upregulated 6.864 0.002

miR‑194* Upregulated 5.820 0.001

miR‑3659 Upregulated 2.227 0.000

miR‑126* Downregulated − 10.462 0.006

miR‑484 Downregulated − 6.956 0.021

miR‑330‑3p Downregulated − 6.609 0.029

miR‑3653 Downregulated − 1.909 0.022

Fig. 2 Expression levels of miRNA‑194 and miRNA‑665 in ESCC samples. Box plots illustrating miRNA expression levels quantified by single qRT‑PCR 
for miR‑194* (a) and miR‑665 (b) in pretherapeutic biopsies of 26 responders and 27 non‑responders

Table 3 Association between the miRNA expression levels 
and  response to  radiochemotherapy in  pretherapeutic 
ESCC biopsy samples

Response 
(TRG1a)

Non‑
response 
(TRG3)

Total p value

High miRNA‑194* 21 7 28 < 0.001

Low miRNA‑194* 5 20 25

Total 26 27 53

High miRNA‑665 19 9 28 0.006

Low miRNA‑665 5 20 25

Total 26 29 53
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several miRNAs that were differentially expressed in 
responders and non-responders.

One major advantage in the context of tissue-based 
expression analysis of miRNA is the stability of the small 
RNA fragments that undergo degradation by prior fixa-
tion (e.g., by formalin) to a considerably lesser degree 
than longer mRNA sequences. The availability of unfixed 

fresh tumor material for molecular analysis is often lim-
ited. Therefore, the use of FFPE tissue, which is routinely 
used for the histopathological diagnostic process, would 
offer major advantages for retrospective and prospec-
tive molecular studies and, in future perspectives, for the 
application within a diagnostic process. The comparabil-
ity between fixed and unfixed tissue for miRNA analysis 

Fig. 3 Survival and ROC analysis. Overall survival (OS) for 53 patients with respect to histopathologic tumor regression (a), miR‑194* (c) and miR‑665 
expression (d). Receiver operating characteristic (ROC) curves (b) for the histopathological non‑response to RCTX stratified by high miRNA‑194* and 
miRNA‑665 expression, respectively
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has been shown in several studies [33–38]. At least, to the 
best of our knowledge, our study on 31 samples is cur-
rently the largest application of FFPE tissue in bioptic 
esophageal cancer tissue prior to preoperative treatment 
to identify differentially expressed miRNAs.

By microarray analysis, 12 miRNAs were identified to 
be different between responders and non-responders. 
Eight miRNAs were up regulated, and four miRNAs were 
down regulated, in non-responders. We could confirm 
the microarray results by single real-time RT-PCR for 
two miRNAs (miR-194* and miR-665) in an expanded 
case collection. Interestingly, based on a Pubmed lit-
erature research, we could not find any of the two con-
firmed miRNAs being described in association with a 
treatment response in tissue based studies before, nei-
ther in esophageal cancer nor in other tumor types. In 
our study, ROC analysis identified significant predic-
tive cut-offs for a response. This underlines the potential 
impact of these miRNAs for the resistance of ESCC to 
radiochemotherapy.

miRNAs have already been investigated by oth-
ers regarding similar research questions. Interestingly, 
many of the miRNAs that have been described to play 
a potential prognostic or predictive role in esophageal 
cancer in these studies (both adeno- and squamous cell 
carcinomas) could be detected by our microarray analy-
sis. However, none of them showed the same differential 
expression between responders and non-responders. 
This may be due to diverging case collections, with mixed 
adeno- and squamous cell carcinomas [39, 40] or purely 
adenocarcinomas, or due to the variation in neoadjuvant 
therapy protocols (radiochemotherapy chemotherapy 
only), or due to the different ethnic backgrounds of the 
patient population (Western and Asian populations) 

[23]. Of note, one recent paper that also used the Agilent 
detection platform showed that a model encompassing 
upregulated miR-145-5p, upregulated miR-152, down-
regulated miR-193b-3p, and upregulated miR-376a-3p 
was highly accurate for the prediction of a nonresponse 
to neoadjuvant radiochemotherapy in an Asian cohort 
[23]. We could not confirm these findings in our analysis, 
and conversely, the most significantly deregulated miR-
NAs of our study did not show up in this paper. Another 
aspect that could explain these divergent results may be 
a technical issue: different platforms for comprehensive 
miRNA expression analysis may provide different results 
[41, 42].

Despite these discrepancies, however, the results of 
these and our studies again highlight a potential prom-
ising role of miRNA profiling but also point to the need 
of standardization of biomarker research before potential 
application in clinical practice.

Our study may be limited by the relatively small sam-
ple size and lack of a true external validation cohort. The 
small case numbers may also explain that we did not find 
a correlation between the miRNAs and patient outcome. 
However, we present a homogeneous case collection with 
standardized assessment of tumor regression as a sur-
rogate for the treatment response, and we concentrated 
on patients with complete regression versus clear non-
responders with > 50% residual tumors. Data from lit-
erature are not consistent with regard to the prognostic 
value of partial tumor regression [8, 22] and we wanted 
to examine two extreme prognostic groups in view of the 
limited sample size. We deliberately accepted a poten-
tial bias caused by this restrictive approach that also 
may influence survival results due the patient’s selection 
prior to the tissue analysis. Our primary goal, though, 
was to perform a pilot study for the technical applica-
tion of microarray miRNA profiling on clinical FFPE 
tissue samples. The results of this part could be at least 
partially confirmed using a different detection method in 
an expanded case collection. However, a validation of our 
results using a larger case collection is clearly demanded. 
A second limitation may be the lack of a comprehensive 
mutational analysis of the tumors. miRNAs closely inter-
act with both wild-type and mutated genes. Further anal-
ysis should also integrate the interaction and networks 
between therapy-related genes and miRNAs, a phenom-
enon that could outrange the impact of a solely miRNA-
based study alone.

Conclusions
Taken together, our data demonstrate the feasibility of 
microarray-based miRNA analysis of diagnostic FFPE 
bioptic tumor tissue. Although several studies have 

Table 4 Multivariate Cox regression analysis (overall 
survival) for  the  histopathological response and  non-
response (tumor regression), pathologic tumor stage 
(UICC ypT category), lymph node status (ypN), distant 
metastasis, and  miRNA-194* and  miRNA-665 expression 
levels

Factor HR 95.0% CI 
for HR

p value p value

Min Max Univariate

Tumor regression 5.681 0.507 63.709 0.159 < 0.001

UICC ypT category 1.460 0.724 2.947 0.290 < 0.001

Lymph node metastases 7.561 1.631 35.062 0.010 < 0.001

Distant metastasis 1.666 0.243 11.442 0.603 < 0.001

Resection status 0.384 0.112 1.315 0.128 0.0120

miRNA‑194* 0.669 0.133 3.352 0.625 0.052

miRNA‑665 0.634 0.104 3.861 0.621 0.197
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suggested that miRNAs might be involved in the modula-
tion of the therapy response and that miRNAs could be 
used as a predictive biomarker, there are major discrep-
ancies among the studies published to date. Therefore, 
validation of our data and those from others is essential 
before implementing miRNA expression analysis as a tool 
for molecular response prediction in ESSC patients. This 
finding may be of interest, because most recently, the 
determination of circulating (tumoral) miRNAs in blood 
samples has been shown to be a feasible approach as a 
potential tool in cancer diagnostics [43–45]. Prior iden-
tification of tissue-derived data may serve as the basis for 
the further development of such non-invasive tests for 
response prediction and monitoring of therapy.
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