Remediation and Control Technologies

Microbiome triggered transformations of trace organic chemicals in the presence of effluent organic matter in managed aquifer recharge (MAR) systems

Karin Hellauer, Jenny Uhl, Marianna Lucio, Philippe Schmitt-Kopplin, Daniel Wibberg, Uwe Huebner, and Jörg E. Drewes

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b04559 • Publication Date (Web): 12 Nov 2018

Downloaded from http://pubs.acs.org on November 23, 2018
Microbiome triggered transformations of trace organic chemicals in the presence of effluent organic matter in managed aquifer recharge (MAR) systems

Karin Hellauera,\dag, Jenny Uhlb,\dag, Marianna Luciob, Philippe Schmitt-Kopplinb,c, Daniel Wibbergd, Uwe Hübner*a, Jörg E. Drewesa

a Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany; karin.hellauer@tum.de, u.huebner@tum.de, jdrewes@tum.de.

b Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; jenny.uhl@helmholtz-muenchen.de, marianna.lucio@helmholtz-muenchen.de, schmitt-kopplin@helmholtz-muenchen.de.

c Technical University of Munich, Chair of Analytical Food Chemistry, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany; schmitt-kopplin@tum.de.

d CeBiTec, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany; dwibberg@cebitec.uni-bielefeld.de

\dag contributed equally.

*Corresponding author:

\textit{E-mail address}: u.huebner@tum.de, \textit{phone}: +49 89 289 13706 (U. Hübner)
Abstract

It is widely assumed that biodegradation of trace organic chemicals (TOrCs) in managed aquifer recharge (MAR) systems occurs via a co-metabolic transformation with dissolved organic carbon serving as primary substrate. Hence, the composition facilitating bioavailability of the organic matter seems to have a great impact on TOrCs transformation in MAR systems. The aim of this study was to elucidate the character of effluent organic matter present in the feed water of a simulated sequential MAR system throughout the infiltration by use of FT-ICR-MS analyses as well as spectroscopic methods. Furthermore, compositional changes were correlated with TOrCs targeted throughout the system as well as the abundance of different microbial phyla. Based on their behavior throughout the infiltration system in which different redox and substrate conditions prevailed, TOrCs were classified in four groups: easily degradable, redox insensitive, redox sensitive, and persistent. Masses correlating with persistent TOrCs were mainly comprised of CHNO containing molecules, but also of CHO which are known as carboxyl-rich alicyclic molecules, while CHOS and CHNOS can be neglected. Easily degradable TOrCs could be associated with CHNO, CHO and CHOS containing compounds. However, a shift of molecular compounds to mostly CHOS was observed for redox insensitive TOrCs. 338 masses correlated with removal of redox sensitive TOrCs, but no distinct clustering was identified.

Table of content/Abstract Art
1. Introduction

Trace organic chemicals (TOCs) usually occur in wastewater treatment plants (WWTP) effluents as well as in the aquatic environment in a concentration range of nanogram to microgram per liter (ng-μg/L), whereas the concentration of the dissolved organic carbon (DOC) is orders of magnitudes higher - typically at several milligrams per liter (mg/L)\(^{1-4}\). It is widely assumed that ambient concentrations of TOCs are not sufficient to support microbial growth\(^5\). Thus, additional organic matter or DOC is needed as a primary growth substrate\(^5\). This transformation of rarely available substrates without any direct benefit to bacteria in the presence of growth supporting substrates is known as co-metabolism\(^6\). Recent studies indicated that the removal of TOCs in the natural environment or engineered biological treatment systems commonly follows such co-metabolic mechanisms\(^7,8\). A key parameter for co-metabolic transformation of TOCs is the availability of biodegradable DOC (BDOC) as primary substrate, both with respect to its quality and quantity\(^1,9\). Previous studies revealed that both the composition and the concentration of BDOC affect the total amount of biomass and the structure of the microbial community\(^10-12\) as well as their functionality\(^13\) and, therefore, TOCs removal\(^9\). It is well established that the transformation of TOCs is enhanced under carbon-limited conditions\(^3,13,14\). Primary substrate comprised of refractory organic compounds, such as humic acid like organic matter, led to an increased TOCs removal compared to systems
using a high fraction of easily degradable compounds like peptone/yeast9,13. However, it still remains unclear, which functional characteristics of the natural organic matter serving as primary substrate determine the efficacy of TO\textsubscript{r}Cs biotransformation. To unravel the composition of the dissolved organic matter (DOM), several analytical tools were previously applied15,16. DOM can be separated based on operationally defined polarity gradients using XAD-resins fractionation or according to its size using size-exclusion chromatography17,18. Furthermore, spectroscopic methods like UV absorbance at 254 nm (UVA\textsubscript{254}) and 3D-fluorescence (3D-EEM) were widely used19–21. However, applied alone these approaches have the disadvantage of deciphering only chromophoric DOM16. In addition, analytical tools allowing for the assignment of functional groups, compound classes and molecular formulas were commonly applied16. This includes Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy16–18 as well as more lately Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS)16,22,23. Because of its high resolution and mass accuracy, FT-ICR-MS has a great capability to unravel the molecular complexity of DOM and is suitable for assigning molecular formulas for complex structures24,25.

The aim of this study was to decipher the composition of effluent organic matter (EfOM) potentially serving as primary substrate in a simulated sequential managed aquifer recharge (MAR) system using FT-ICR-MS and spectroscopic methods and to correlate potential changes throughout the infiltration with the transformation of selected TO\textsubscript{r}Cs as well as the abundance of microbial phyla. The sequential MAR technology (SMART) is defined as a combination of two infiltration steps in series with an intermediate aeration step to establish highly controlled oxic and carbon-limited conditions in the second infiltration system which are favorable for the removal of many TO\textsubscript{r}Cs26.
2. Materials and Methods

2.1 Laboratory-scale column experiment

The laboratory-scale column experiment consisted of two sequential infiltration systems operated in downward flow direction under fully saturated conditions (Figure 1) for a period of approximately eight months. Tertiary treated effluent of the WWTP in Garching, Germany was continuously fed into the first column. The influent to the system was stored at ~4°C and filled up twice a week without an additional spike of TOrCs due to their immediate presence in the tertiary treated wastewater. Prior to sampling within this study, the column system was continuously operated with tertiary treated WWTP effluent for more than six months. Both systems were connected with an intermediate aeration step using pressurized air to simulate SMART and therefore, providing a series of different redox conditions and substrate availability. The columns of the first infiltration system (B01, B02; height (h): 50 cm, inner diameter (ID): 14 cm) were filled with technical sand (grain size ranged from 0.2 to 1.0 mm; Euroquarz GmbH, Germany), the columns of the second infiltration system (b1-b4; h: 30 cm, ID: 9 cm) with aquifer material ($d_{50} = 0.8$ mm, $f_{oc} = 0.003\%$), which was taken from previous column experiments that were continuously operated for more than 5 years1,14. The flow rate of 60 mL/h (B01, B02) and 30 mL/h (b1-b4) resulted in a hydraulic retention time (HRT) of 2.1 days/column or 0.9 days/column, respectively an overall HRT of 7.8 days. The HRT was determined based on the C-peak method27 using the conservative tracer potassium bromide (data not shown). Columns were composed of polymethylmethacrylate and could be opened on top for soil sampling. All columns were equipped with oxygen sensor spots (SP-PSI3, PreSens, Germany) for non-invasive oxygen measurements along the length of the columns. Water samples to characterize the bulk organic carbon (DOC; UVA\textsubscript{254}, 3D-EEM, FT-ICR-MS) and prevailing redox conditions (dissolved oxygen (DO); ammonium- and nitrate-
nitrogen) as well as for quantifying TOrcs were taken (bi-)weekly in the influent (0.0 days) and in the effluent of each column with respect to the HRT (2.1; 4.2; 5.1; 6.0; 6.9 and 7.8 days).

Figure 1: Laboratory-scale column experiment consisting of two infiltration steps (system 1, grey: columns B01, B02; system 2, patterned: columns b1-b4) operated in series with an intermediate aeration (Eff. B02, grey patterned). The system was fed with effluent of the WWTP Garching, Germany (WWTPE) with a flow rate of 60 mL/h (system 1) and 30 mL/h (system 2), respectively.

2.2 Analytics

Sampling: Soil samples for 16S rRNA amplicon sequencing were collected once, approximately 1.5 months after the initial start of the experiment, from the top of each column. Water samples for bulk organic carbon and redox characterization as well as for TOrcs quantification were collected in 200 mL amber bottles and were filtered through 0.45 μm with cellulose-nitrate filters (Sartorius AG, Germany). To characterize the EfOM, > 50 mL sample were filtered (Whatman GF/F filter, Germany) followed by acidification to pH 2 using hydrochloric acid (32%, Merck KGaA, Germany) and stored at 4 °C pending further analysis.
DNA extraction and 16S rRNA amplicon sequencing: DNA was extracted in triplicate by use of the PowerSoil® DNA Isolation Kit (MO BIO Laboratories, USA) according to manufacturer’s guidelines with the following exceptions: i) 1.0 g of soil was used as starting material, ii) a FastPrep®-24 cell disrupter (MP Biomedicals, USA) was used at 6 m/s for 40 s for disruption of the cells. The eluted DNA was pooled prior to downstream analyses. To increase the purity of each DNA extract, the Genomic DNA Clean & Concentrator Kit (Zymo Research Europe, Germany) was used with an input of 100 µL sample and 200 µL binding buffer. Illumina library preparation was operated following the 16S Metagenomic Library Preparation workflow (# 15044223 Rev. B; Illumina, USA) targeting the V3 and V4 region using Nextera XT Index Kit (Illumina, USA) for indexing as previously described by Engel et al. (2017). Flash v.1.2.11 was used to merge MiSeq forward and reverse paired end reads with a maximum overlap of 300 bp. All merged reads were combined to a single file and further processed using USEARCH v9.2.61 as provided in the supporting information (SI). Taxonomy assignment of identified operational taxonomic units (OTUs) was obtained by use of Ribosomal Database Project (RDP) classifier.

Bulk organic carbon and redox parameters: For the DOC analysis, samples were acidified with hydrochloric acid to a pH of 2 and stored at 4 °C prior to the measurement in triplicate using a Vario TOC CUBE analyzer (Elementar, Germany). UVA254 was photometrically determined in duplicate using a BioSpec UV-1601 (Shimadzu Europa GmbH, Germany). As the ratio of UVA254 and the DOC the specific UV absorbance (SUVA254) was calculated which could be used as parameter representing the aromatic content of the DOC. To avoid quenching effects of the fluorescence signal, all samples with a DOC > 2 mg/L were diluted to 2 mg/L with ultrapure water prior to 3D-fluorescence spectroscopy using a Aqualog® fluorescence spectrometer (Horiba Scientific, USA). More information about the 3D-
fluorescence spectroscopy measurements are provided in the SI. The dissolved oxygen (DO) concentration was monitored with the Fibox 4.0 (PreSens, Germany) by use of the oxygen sensor spots within the columns as well as flow-through cells (FTC-PSt3, PreSens, Germany) in the influent and the effluents of each column (detection limit = 0.015 mg/L). Hach cuvette tests LCK304 (0.015 – 2.0 mg/L NH$_4^+$-N) and LCK340 (5 – 35 mg/L NO$_3^-$-N) (Hach Lange GmbH, Germany) were used to determine the concentration of ammonium- and nitrate-nitrogen, respectively.

TOrCs quantification: Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to quantify TOrCs2. Measurements were performed in positive electrospray ionization mode. All investigated TOrCs and their corresponding limits of quantification (LOQ) are listed in Table 1. If a measured TOrC concentration was lower than the stated LOQ, the detected value was set as half of the LOQ for further calculations.

FT-ICR-MS analysis: Prior to FT-ICR-MS, a solid phase extraction (SPE) was performed as previously described by Dittmar et al. (2008)34. Therefore, 50 mL of each sample were extracted with 5 mL methanol (LC-MS Chromasolv®, Sigma-Aldrich, Germany) using PPL cartridges (Bond Elut PPL, 1 g, 3 mL; Agilent, USA) followed by a dilution of 1:50 (v/v %) with methanol. The analysis was conducted on a solariX FT-ICR-MS (Bruker Daltonik GmbH, Germany) equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc., GB) and an APOLLO II electrospray ionization (ESI) source (Bruker Daltonik GmbH, Germany) in the negative ionization mode. Further information about the mass spectra acquisition are provided in the SI. To elucidate masses, which were assigned to molecular formulas based on the elements 1H, 12C, 16O, 14N and 34S, van Krevelen diagrams35 are used representing masses by means of their hydrogen to carbon (H/C) and oxygen to carbon (O/C) ratio. Molecules
2.3 Statistical analyses

Parallel factor analysis (PARAFAC): PARAFAC is a statistical method, which is often applied to identify and quantify components of 3D-fluorescence spectroscopy data. Therefore, normalized 3D-EEM data were exported with adjusted excitation wavelengths of 239-599 nm from the Aqualog® software and further processed using the SOLO software (Eigenvector Research Inc., USA). Details of the PARAFAC analysis are given in the SI.

Multivariate analyses: Multiple co-inertia analysis (MCIA) as well as orthogonal partial least squares (OPLS) regression were used in order to describe the correlation between the masses extracted by use of FT-ICR-MS, the microbiome in terms of OTUs identified by applying 16S rRNA amplicon sequencing and in case of OPLS, metadata (Table S 2). For the correlation of masses (and metadata) with the microbiome, the OTUs from the top of the first column (B01) were assigned to the system`s influent B0 and OTUs from the top of each of the following columns (B02, b1-b4) were equalized to the effluent of its previous column (B01, B02-b3). Since no distinct differences in microbial community diversity in deeper sediments were observed, OTUs from the top of column b4 were not only accorded to effluent b3 but also to the final effluent of the system. Prior to analyses, all data (masses, microbiome and metadata) were stored in one matrix and a unit variance (UV) scaling was applied. The MCIA was calculated with the purpose of integrating the two different datasets: masses and OTUs. Therefore, the MixOmics package (RStudio Version 1.0.136 – © 2009-2016 RStudio, Inc.) was used. In order to describe the relation that link the metadata to the masses together with the OTUs an OPLS was calculated in SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). Therefore,
a logarithmic transformation was applied, and the final model was built only with the significant metadata (p<0.05). The model’s goodness of fit was tested by the p-values calculated with the CV-ANOVA (Cross Validation ANOVA). The procedure to select masses and OTUs, which were most relevant to describe the experimental design, followed the method previously described in Adrian et al. (2017)37.

3. Results and Discussion

3.1 Long-term performance characterization of column systems

Bulk organic and redox parameters: The initial DOC concentration of 7.6 ± 1.9 mg/L was reduced to 4.6 ± 0.9 mg/L within the first 4.2 days of infiltration with the majority of removal occurring within the first column (Figure 2). After reaeration, the DOC was further depleted in the second infiltration system resulting in a final concentration of 3.6 ± 0.6 mg/L after 7.8 days.

A significant increase of SUVA\textsubscript{254} in the first system (student’s t-test, two-tailed, paired, \(\alpha < 0.05 \)) indicates a preferred removal of easily degradable aliphatic structures changing the character of the DOC to more aromatic. No significant change in SUVA\textsubscript{254} was observed after reaeration (Figure 2). Results of UVA\textsubscript{254} measurements are presented in Figure S 1.

Based on the 3D-fluorescence measurements and the subsequent PARAFAC analysis, two characteristic components were identified...
(Figure S 2). The accuracy of the PARAFAC model was confirmed by i) a core consistency of 100 %, ii) 98 % total variance explained, and iii) 99 % as a result of the split half analysis. The first component had a maximum fluorescence intensity at 239/451 nm (λ_{Ex}/λ_{Em}) and the second component at 239/376 nm, respectively. Based on previously published studies, Chen et al. (2003)38 classified five characteristic regions for organic compounds. Following this approach, component 1 was assigned to region III, fulvic acid-like substances and component 2 to region II, aromatic protein II (tryptophan-like substances). The intensity of these two components decreased throughout the infiltration, while a strong decline was observed in the first column. This is in accordance to the removal of DOC and the reduction of UVA\textsubscript{254}, which were also mainly removed or rather declined during the first two days. After reaeration, a further decrease of both components was detected in the second infiltration system showing a similar trend as the UVA\textsubscript{254} measurements (cf. Figures S 1 and S 3). Due to the high amount of easily degradable DOC in the influent, the oxygen (DO\textsubscript{Influent} = 5.9 ± 1.0 mg/L) was rapidly consumed during subsurface treatment (Figure S 4). In addition, NO\textsubscript{3}-N concentration decreased insignificantly from 13.3 ± 2.4 mg/L to 12.0 ± 2.2 mg/L indicating the prevalence of suboxic to anoxic conditions within 4.2 days of infiltration. An electron balance assuming average oxidation number of zero for organic carbon resulted in a consumption of 2.2 mg/L DOC from influent oxygen (2.7 mg O\textsubscript{2}/mg C). A decrease of NO\textsubscript{3}-N by 0.7 mg/L could be further explained due to the oxidation of 0.8 mg/L DOC to CO\textsubscript{2} (0.9 mg N/mg C) which confirms prevailing anoxic conditions in the first infiltration system. After reaeration, the DO immediately decreased within the first centimeters of infiltration which could not solely be explained by residues of easily degradable DOC in the influent to the second system. Therefore, redox conditions changed from oxic (DO (5.1 days) = 1.1 ± 1.3 mg/L) to suboxic defined by DO < 1.0 mg/L and ΔNO\textsubscript{3} -N < 0.5 mg/L14. Ammonium (NH\textsubscript{4}⁺ -N\textsubscript{Influent} = 0.10 ± 0.12 mg/L)
was removed mainly below the LOQ (0.015 mg/L) after the first two days of infiltration (data not shown).

Trace organic chemicals: TOrCs were classified into four groups based on their behavior throughout the system (Table 1), namely i) persistent compounds exhibiting less than 10% removal throughout the system; ii) easily degradable compounds being removed below LOQ within 4.2 days, even under anoxic redox conditions; iii) redox insensitive compounds exhibiting removal in both systems before and after aeration, and iv) redox sensitive compounds being persistent in the first infiltration system (4.2 days) but efficiently transformed after reaeration. Relative removal of all targeted TOrCs throughout the system are given in Figure S 5. Since limited contribution of sorption has been reported previously for similar column systems after long-term operation by Alidina et al. (2014), biotransformation can be assumed as major mechanism for TOrCs removal in this study.

<table>
<thead>
<tr>
<th>TOrCs</th>
<th>LOQ [ng/L]a</th>
<th>Molecular formula</th>
<th>Log P (log D pH 7.4)d</th>
<th>c₀ [ng/L]</th>
<th>Removal [%] 4.2 days</th>
<th>Removal [%] 7.8 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent (≤ 10% after 7.8 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>10; 5</td>
<td>C₁₅H₁₂N₂O</td>
<td>2.77 (2.77)</td>
<td>393 ± 98</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Primidone</td>
<td>25; 25</td>
<td>C₁₂H₁₄N₂O₂</td>
<td>1.12 (1.12)</td>
<td>72 ± 26</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Easily degradable (removal below LOQ within 4.2 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citalopramb</td>
<td>5; 5</td>
<td>C₂₀H₂₁FN₂O</td>
<td>3.76 (1.41)</td>
<td>154 ± 48</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>Redox insensitive (continuous removal within 7.8 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climbazolec</td>
<td>5; 5</td>
<td>C₁₅H₁₇ClN₂O₂</td>
<td>4.34 (4.30)</td>
<td>111 ± 35</td>
<td>78 ± 21</td>
<td>>98</td>
</tr>
<tr>
<td>Metoprololc</td>
<td>2.5; 2.5</td>
<td>C₁₅H₂₅NO₃</td>
<td>1.76 (-0.47)</td>
<td>309 ± 104</td>
<td>80 ± 16</td>
<td>>99</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>25; 5</td>
<td>C₁₄H₁₁Cl₂N₂O₂</td>
<td>4.26 (1.10)</td>
<td>1326 ± 534</td>
<td>47 ± 19</td>
<td>94 ± 5</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>10; 2.5</td>
<td>C₁₃H₁₇NO₂</td>
<td>-1.27 (-1.27)</td>
<td>2246 ± 727</td>
<td>58 ± 15</td>
<td>92 ± 4</td>
</tr>
<tr>
<td>Sotalolec</td>
<td>5; 5</td>
<td>C₁₃H₂₀N₂O₃S</td>
<td>-0.40 (-2.12)</td>
<td>41 ± 41</td>
<td>65 ± 46</td>
<td>>95</td>
</tr>
</tbody>
</table>

Table 1: List of TOrCs investigated during this study (n ≥ 7).
The persistent behavior of carbamazepine and primidone in MAR systems is well documented from field- as well as laboratory-scale investigations3,39–41. Removal up to 70 % of citalopram in a carbon-rich environment has recently been shown from batch experiments using activated sludge42. Climbazole as well as metoprolol were removed > 75 % even under anoxic redox conditions within 4.2 days of infiltration. A removal of > 75 % (HRT \(\approx\) 12 days) under anoxic redox conditions for metoprolol was also observed in laboratory-scale column experiments41. Muntau et al. (2017)43 reported a removal below the LOQ (5 ng/L) via soil-aquifer treatment (HRT < 1 day) for climbazole confirming the results of this study. Diclofenac, gabapentin, and sotalol were removed < 70 % in the first, but > 90 % in total after 7.8 days of infiltration. However, for sotalol 7 out of 22 measured influent concentrations were below the LOQ and therefore, due to the low influent concentrations, further discussions about its removal efficiency are not expedient. Diclofenac is known to be biodegradable in MAR systems and particularly under oxic and carbon-limited conditions14,26,41. In addition, a significantly enhanced transformation using the SMART approach in comparison to a conventional MAR treatment was previously reported for gabapentin3. In case of the antibiotic drug sulfamethoxazole, moderate to poor transformations of approximately 30 % were detected

<table>
<thead>
<tr>
<th>Substance</th>
<th>C<sub>x</sub>H<sub>y</sub>N<sub>z</sub>O<sub>3</sub>S<sub>2</sub></th>
<th>LOQ<sub>1</sub></th>
<th>LOQ<sub>2</sub></th>
<th>Removal at 2.1 days</th>
<th>Removal at 7.8 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfamethoxazole</td>
<td>10; 5</td>
<td>0.79 (0.00)</td>
<td>131 ± 72</td>
<td>29 ± 41</td>
<td>55 ± 36</td>
</tr>
<tr>
<td>Benzotriazole</td>
<td>50; 50</td>
<td>1.30 (1.28)</td>
<td>4302 ± 1187</td>
<td>< 10</td>
<td>35 ± 33</td>
</tr>
<tr>
<td>Tramadol</td>
<td>5; 5</td>
<td>2.45 (0.62)</td>
<td>265 ± 66</td>
<td>< 10</td>
<td>71 ± 17</td>
</tr>
<tr>
<td>Venlafaxine<sup>c</sup></td>
<td>2.5; 2.5</td>
<td>2.74 (1.22)</td>
<td>343 ± 74</td>
<td>< 10</td>
<td>> 99</td>
</tr>
</tbody>
</table>

aThe LOQ was adjusted during the experimental period: the first number gives the LOQ of the first five months, the second number of the last two months of operation.

bRemoved < LOQ after 2.1 days of infiltration for most samples

cRemoved < LOQ after 7.8 days of infiltration for most samples

after 4.2 and approximately 55% after 7.8 days of infiltration. In the literature, several studies focusing on sulfamethoxazole and its behavior in MAR systems are reporting ranges of biotransformation from partially and slowly removable during bank filtration and artificial recharge to resistant to microbial biotransformation in a pilot-scale riverbank filtration system. Three out of 12 investigated TOrCs, namely benzotriazole, tramadol and venlafaxine, persisted in the first infiltration system under mostly anoxic redox conditions but were transformed throughout the system at approximately 35% (benzotriazole), 70% (tramadol), and below the LOQ (venlafaxine) after reaeration with air under prevailing oxic to suboxic redox conditions. The high redox sensitivity and favored degradation under carbon-limited conditions were previously reported for benzotriazole. However, removal up to 35% is not very efficient and therefore it is postulated that oxic to suboxic redox conditions are not sufficient. Tramadol was not degraded in the first 0.9 days after reaeration, however, interestingly, a steady transformation up to approximately 70% could be detected from 5.1 to 7.8 days of infiltration. It seems that the HRT had a significant influence on tramadol removal as it was previously shown to be persistent in a single-stage as well as sequential biofiltration system with an empty bed contact time of 290 to 2,090 minutes. A transformation of > 99% after reaeration was observed for venlafaxine emphasizing the benefit of predominant oxic and carbon-limited conditions for its removal. Previous results on venlafaxine degradation varied from persistent behavior in single stage as well as sequential biofiltration to degradation of > 50% even under anoxic redox conditions. However, removal seemed most efficient under oxic conditions.

3.2 Microbial community structure
The microbiome was elucidated throughout the system based on 16S rRNA amplicon sequencing resulting in a median sequencing depth of approximately 60,000 reads. Based on this analysis, the most dominant phyla were *Proteobacteria* (40 - 48 %), *Planctomycetes* (5 – 13 %), *Acidobacteria* (12 – 22 %), and *Bacteroidetes* (1 - 11 %) (Figure S 6). This is confirming previous studies reporting that these organisms are, amongst others, highly abundant in soil45. *Proteobacteria* were detected in all depths with the strongest contribution to the overall microbial community structure. Whereas in the top of the first column \(\alpha\)- and \(\gamma\)-*Proteobacteria* dominated, after six days of infiltration \(\beta\)-*Proteobacteria* mainly occurred. *Planctomycetes* as well as *Bacteroidetes* were also enriched in the shallow sediments and in contrast, *Acidobacteria* and *Nitrospirae* primarily prevailed in the second system characterized by carbon-limited (\(\Delta\text{DOC} = 1.1 \pm 1.2 \text{mg/L}\)) and oxic (DO > 1 mg/L) to suboxic (DO <1 mg/L; \(\Delta\text{NO}_3^-\cdot\text{N} < 0.5 \text{mg/L}\)) conditions. This characterization focused at the phyla and class level in order to provide a general overview of the microbial community structure in MAR systems.

3.3 Characterization of effluent organic matter (EfOM)
Based on the (-)ESI FT-ICR-MS measurements, masses were mainly detected up to 600 m/z with a resolution of > 450,000 at 320 m/z. The EfOM was characterized by more than 1,000 CHNO containing molecules and a lower number (n = 572) of masses assigned to CHOS molecular composition with approximately 20 high intense signals (Figure 3). The high number of nitrogen containing compounds could be linked to the peak of protein-like substances identified by the 3D-fluorescence measurements (Figure S 2), which are known to be specific for EfOM in comparison to natural organic matter (NOM)\cite{18,46}. CHNO containing molecules assigned to proteins and lignin-like substances from WWTP effluents have been identified previously\cite{47}. However, based on compound classes and their location within van Krevelen plots\cite{48} most intense signals of CHNO containing molecules were in the area of lignin-like substances and only few masses were detected in the area of proteins. Molecules containing a sulfur atom (CHOS) were previously shown to be dominant in EfOM, which could partly be attributed to NOM reaction products of sulfurreduction and substances from anthropogenic origin like anionic surfactants such as linear alkyl benzene sulfonates and their transformation products\cite{22,49}. Well known surfactants, which may be present in water and wastewater\cite{22,50}, were plotted in Figure S 7 and those which were detected in the EfOM of this study were highlighted. The most detected masses in EfOM could be assigned to transformation products of surfactants pointing to a highly efficient removal of surfactants in the WWTP Garching. Throughout the infiltration, the relative abundance of masses assigned
to CHO containing molecules increased and a decrease of molecules comprised of CHNOS was observed (Figures S 8 and S 9). However, even if shifts regarding the number of molecular formulae comprised of different elements were observed, the general pattern of elemental compositions elucidated from van Krevelen plots did not clearly change showing that only a small fraction of the EfOM was affected by the process.

3.4 Fate of the EfOM and correlation with microbial community

Multiple co-inertia analysis (MCIA): To elucidate the co-inertia between two datasets, masses assigned using FT-ICR-MS and OTUs identified via 16S rRNA amplicon sequencing, a MCIA was performed. Thereby, the influence of the organic matter on the microbial community composition at the phyla level could be revealed. A distinct separation between the influent, the first and the second infiltration system was shown by a clear clustering of masses and OTUs (Figure 4). Masses which could be detected throughout the system or even increased in the second infiltration system are further assigned as persistent (Figure S 10, persistent). More than 50% of these persistent masses were composed of CHO containing molecules, followed by CHNO (34 %) and only some CHOS and CHNOS compounds. CHO and CHNO containing molecules seem to be more resistant against microbial degradation than molecules containing sulfur atoms. Based on the van Krevelen diagram of such persistent CHO containing molecules, compounds could be designated as carboxyl-rich alicyclic molecules (CRAM), which are known as highly abundant and refractory dissolved organic matter. Furthermore, the regions in van Krevelen diagrams in which persistent CHO and CHNO containing molecules were observed are characteristic for lignin- and tannin-like substances. Some of the high intense CHOS peaks could be assigned to biodegradation intermediates of dialkyltetralin sulfonates and additionally, persistent compounds comprised of C, H, O and S were also located in the
region of lignins. These refractory substances have previously been found in soils and sediments52 but also in WWTP effluents53. Hence, the persistent backbone after natural treatment seem to share similarities with organic matter found in the environment regarding elemental compositions which confirms results of a study previously performed by Drewes et al. (2006)18. Masses which were generally detected in the influent but with less intense signals in different effluents throughout the system (Figure 4: Influent B0; Figure S 10: easily degradable to redox insensitive), were characterized by a large proportion of sulfur containing molecules (CHOS). Three of the most intense signals (H/C \(\approx 0.3-0.4 \)) derived from sulfophenyl carboxylate compounds, also known as degradation products of linear alkylbenzenesulfonates54. CHNO and CHO appeared similarly abundant, whilst most intense signals of CHNO were obtained in the region of lignin-like substances, but CHO in the area of proteins and cellulose. Masses of the third group representing molecules, which had the highest intensities in the effluents of columns B01 and B02 coupled with efficient removal in the second system, were strongly dominated by sulfur containing compounds (Figure 4: B01, B02; Figure S 10: redox sensitive). The relative contribution of CHNO remained constant in comparison to easily degradable and redox insensitive compounds, CHNOS slightly increased but the number of CHO became negligible. Hence, we assume compounds comprised of C, H and O do not respond to changing redox conditions, whereby CHOS containing molecules seemed to be sensitive with respect to oxygen availability in MAR systems.

Microbial taxa such as \textit{Acidobacteria}, \textit{Proteobacteria} (\(\alpha-, \beta-, \gamma\)-Proteobacteria), \textit{Planctomycetes} and \textit{Verrucomicrobia} were dominant (relative abundance > 1 \%) in all three groups obtained by elaborating MCIA (Figure 4). This suggests that these phyla do not essentially need specific growth substrates in MAR as they grow with any carbon source as primary substrate available within the system. \textit{Bacteroidetes}, \textit{Chloroflexi} but also \textit{Candidatus
Saccharibacteria and candidate division WPS-1 were primarily correlated with masses showing an immediate removal in the first infiltration system which may indicate that those bacterial phyla prefer easily degradable organic matter as growth substrate. Firmicutes had a relative abundance of > 1% within the cluster of persistent masses or those which have an increased intensity in the second system, but they were less abundant (< 1%) in the other two groups (easily degradable/redox insensitive and redox sensitive). Thus, the majority of species belonging to Firmicutes seem to preferentially settle in MAR systems if the organic matter is characterized by a high refractory content.
Figure 4: Based on multiple co-inertia analysis three distinct clusters of masses (diamonds) and OTUs (triangles) were identified according to the influent (Influent B0), the first (B01, B02) and the second (b1-b4) infiltration system. Corresponding OTUs (B01 – b4) and masses are connected by a line, which length is proportional to the divergence between the data from the same sample. Van Krevelen diagrams, absolute numbers of masses and their elemental compositions as well as taxonomy assignments representative for each cluster are shown. The total number of masses are given within each circle; the abundance of microbial phyla or classes, respectively, are shown as relative values.
Orthogonal partial least squares analysis (OPLS): As a co-metabolic transformation of TOrCs in MAR systems is widely assumed\(^7\), a correlation between masses assigned by use of FT-ICR-MS and detected TOrCs may be evident. The establishment of the microbial community on phyla level at different depths based on receiving feed water should be elucidated. In addition, the microbiome which could be involved in the transformation processes of the primary substrate and therefore, the TOrCs had to be considered. Hence, an OPLS was performed to emphasize masses as well as OTUs, which correlate with targeted TOrCs. Bulk organic parameters (DOC, UVA\(_{254}\)) as well as redox parameters (DO, NO\(_3^-\) -N) were also included in the model. However, NO\(_3^-\)-N will not be considered in further discussions as its actual concentration will be biased especially after reaeration. As shown in Figure 5, masses and OTUs were successfully clustered with respect to the four distinct groups: easily degradable, redox insensitive, redox sensitive and persistent compounds (Table 1), which indicates there is a relation between the behavior of TOrCs in MAR and primary substrate. The persistent compounds primidone and carbamazepine strongly correlated with masses dominated by CHNO and CHO containing molecules, whilst CHOS and CHNOS ones can be neglected (Figure S 11). In accordance to results obtained by applying MCIA, CHO and CHNO containing molecules could be assigned to refractory dissolved organic matter such as CRAM\(^{51-53}\). It could be assumed, that TOrCs correlating with such refractory organic matter may also be incorporated in the environmental organic backbone. With respect to the easily degradable TOrC citalopram, relative abundances of CHO and CHOS were approximately 30 %, whilst CHNO containing molecules were most frequently detected (38 %; Figure 5). For CHO, most intense signals were observed from oxidized compounds (O/C > 0.5) within a H/C range of 1.0 - 1.5. In case of CHNO, signals with O/C < 0.4 and H/C 0.75 – 1 but also with O/C > 0.5 and H/C 1.0 - 1.5 were detected. Single highly intense CHOS signals could be
assigned to sulfophenyl carboxylates and intermediates of dialklyltetralin sulfonates. The largest group of TOrcs was those showing a redox independent behavior, namely, transformation throughout the system under anoxic as well as oxic to suboxic redox conditions (Table 1, Figure S 5). From easily degradable to redox insensitive compounds a shift from 38 % to 50 % regarding the relative abundance of CHOS was observed. In contrast, the number of CHO and CHNO containing molecules decreased from approximately 30 % (easily degradable) to approximately 20 % (redox insensitive). While CHO containing molecules were mainly characterized by most intense signals in the area of O/C > 0.5 and H/C > 1.0, CHNO exhibited intensive signals in the range of O/C < 0.5 and H/C < 1.0. The fourth group of major interest within this study contained the TOrcs benzotriazole, tramadol and venlafaxine due to their redox sensitive behavior (Table 1). There are 338 masses in total which could be unambiguously assigned to molecular formulas containing C, H, O and/or N and/or S following this trend. In this group, molecules comprised of CHO were less abundant (17 %), CHOS and CHNOS occurred to approximately 25 % each. CHNO containing molecules were the most abundant group with more than 30%. In all four molecular groups, no distinct clustering was obtained in the van Krevelen plots, they were all detected in a range of O/C 0.2 – 1.0 and H/C of 0.5 - 2.0.

Microbial phyla imply highly diverse characteristics regarding metabolic functions as they are comprised of a variety of species having specialized strategies to utilize growth substrate. In accordance to the results observed by use of MCIA, the microbiome which seems to not prefer a specific growth substrate was mainly comprised of α-Proteobacteria, Acidobacteria and Planctomycetes (relative abundance > 1 % at all four groups; Figure 5). Firmicutes and Gemmatimonadetes could be correlated with persistent masses having a relative abundance of > 1 %, but < 1 % in correlation with easily degradable, redox insensitive or redox sensitive
compounds. A higher abundance of *Firmicutes* in simulated MAR receiving primary substrate mainly shaped by refractory humic acid in comparison to easily degradable peptone/yeast has previously been reported. A relative abundance of > 1 % in correlation with easily degradable and redox insensitive masses, TOrCs as well as the DOC and UVA but also with redox sensitive masses, TOrCs and DO was observed for *Bacteroidetes* (Figure 5). As this phylum was also correlated to easily degradable masses using MCIA it may be suggested that *Bacteroidetes* remarkably contribute to degradation of organic matter and therefore, co-metabolic transformation of TOrCs. Similar results were observed by Li et al. (2013) who proposed a link between *Bacteroidetes* abundance and BDOC reduction. Microbial phyla with an abundance of > 1 % solely correlated to either easily degradable, redox insensitive or redox-sensitive compounds could not be identified. However, based on phylum level, it will not be possible to derive a deeper understanding of metabolic pathways and their associated metabolites. Nevertheless, a correlation between compounds comprised of CHOS with easily degradable and redox insensitive masses was figured out, while persistent organic matter mainly correlated with highly refractory CRAM. To further elucidate the correlation between TOrCs transformation and the composition of organic matter, NMR analysis would be expedient to emphasize not only compound classes but also functional groups which correlate between organic matter and TOrCs.
Figure 5: Based on orthogonal partial least squares (OPLS) regression clusters of masses and OTUs were identified according to the four categories of TOrCs and their behavior in MAR systems: i) persistent, ii) easily degradable, iii) redox insensitive, iv) redox sensitive. Van Krevelen diagrams, absolute numbers of masses and their elemental compositions as well as taxonomy assignments representative for each cluster are shown. The total number of masses are given within each circle; the abundance of microbial phyla or classes,
respectively, are shown as relative values; consider that the microbiome of column B01 corresponds to the influent B0 and each column (B02-b4) to the effluent of the previous column (B01-b3). The OPLS model gave the following values for the goodness of its fit and the goodness of the prediction: \(R^2(Y)(\text{cum}) = 0.9 \) and \(Q^2(\text{cum}) = 0.9 \). *Not considered for further discussions.
Acknowledgments

This study was funded by the German Federal Ministry for Research and Education as part of the TrinkWave project (BMBF, grant number: 02WAV1404). We would like to thank all involved colleagues from the Chair of Urban Water Systems Engineering for their technical and analytical support, especially Hubert Moosrainer, Nicole Zollbrecht, Myriam Reif, Ursula Wallentits, Heidrun Mayrhofer, Wolfgang Schröder and Johann Müller as well as our graduate students Nathalie Vas, Franka Busch and Michael Osina. The bioinformatics support of the BMBF funded project ‘Bielefeld-Gießen Center for Microbial Bioinformatics – BiGi (Grant number 031A533)’ within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

Conflict of Interests

The authors declare no competing financial interest.

Supporting Information

The SI provides further information regarding material and methods (Tables S 1 and S 2) as well as results and discussion (Figures S 1 – S 11).

1. References

(24) Stenson, A. C.; Marshall, A. G.; Cooper, W. T. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray

(54) Riu, J.; Gonzalez-Mazo, E.; Gomez-Parra, A.; Barceló, D. Determination of parts per trillion level of carboxylic degradation products of linear alkylbenzenesulfonates in coastal
