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Abstract 

Background:  DNA methylation age (mAge), a methylation biomarker for the aging process, might serve as a more 
accurate predictor of morbidity and aging status than chronological age. We evaluated the role of multiple factors, 
including fat deposition, cardiometabolic risk factors and lifestyle weight-loss intervention, on the deviation of mAge 
from chronological age (mAge deviation) or 18-month change in mAge (∆mAge). In this sub-study of the CENTRAL 
magnetic resonance imaging weight-loss trial, we evaluated mAge by a validated 240-CpG-based prediction formula 
at baseline and after 18-month intervention of either low fat (LF) or mediterranean/low carbohydrate (MED/LC) diets.

Results:  Among 120 CENTRAL participants with abdominal obesity or dyslipidemia, mAge (mean ± SD: 
60.3 ± 7.5 years) was higher than the chronological age (48.6 ± 9.3 years) but strongly correlated (r = 0.93; 
p = 3.1 × 10–53). Participants in the lowest tertile of mAge deviation from their chronological age had significantly 
lower waist-circumference, visceral adipose tissue, intrahepatic fat (IHF) content, fasting-glucose and HOMA-IR, as 
compared with participants in the highest sex-specific residual tertile (p < 0.05 for all). IHF% remained associated with 
greater mAge deviation after further adjustments (β = 0.23; p = 0.02). After 18-month weight-loss lifestyle interven-
tion, mAge remained significantly correlated with chronological age (r = 0.94, p = 1.5 × 10–55). mAging occurred, with 
no difference between lifestyle intervention groups (∆ = 0.9 ± 1.9 years in MED/LC vs. ∆ = 1.3 ± 1.9 years in LF; p = 0.2); 
however, we observed a mAging attenuation in successful weight losers (> 5% weight loss) vs. weight-loss failures 
( ∆ = 0.6 years vs. ∆ = 1.1 years; p = 0.04), and in participants who completed the trial with healthy liver fat content 
(< 5% IHF) vs. participants with fatty liver (∆ = 0.6 years vs. ∆ = 1.8 years; p = 0.003). Overall, 18 months of weight-loss 
lifestyle intervention attenuated the mAging of the men, mainly the older, by 7.1 months than the expected (p < 0.05).
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Background
Epigenetic modifications include changes on the 
genome that may alter gene expression without chang-
ing the DNA sequence [1]. Epigenetic alterations might 
be induced by several factors such as genetics [2], envi-
ronmental [3] and lifestyle factors [4, 5]. Importantly, 
they were suggested as mediators to aging and lifespan-
related conditions [6]. A major mechanism underlying 
epigenetic regulation is the DNA methylation at cyto-
sine followed by guanines (CpG sites) [7], where DNA 
methyltransferases are responsible for the methylation 
in the CpG region [8]. Prediction of age by DNA meth-
ylation of specific CpGs was first described by Horvath 
[9], followed by others [10, 11], as aging was associated 
with DNA methylation [12].

Prediction of age by methylation level at specific sites 
has been performed among several populations (which 
differed mainly by age and/or race), by different pre-
diction formulas, described as “epigenetic clock,” “age 
acceleration” (expressing the difference between age 
predicted by DNA methylation and chronological age) 
or “methylation age” (mAge). These formulas success-
fully predicted age by an epigenetic features [9–11]. 
mAge, as evaluated by specific CpGs formulas [9], is 
likely to increase at a slower pace than actual age across 
the life course, especially in older populations [13]. 
Methylation aging, the deviation between mAge and 
chronological age, or age acceleration, are suggested 
to be strong predictors of all-cause mortality [12, 14] 
and fatal and nonfatal cardiovascular disease [15–18]. 
In another epigenetic clock study, using Horvath’s 353 
CpG-based formula, epigenetic aging rates were signifi-
cantly associated with sex, race/ethnicity and coronary 
heart disease risk factors [19]. mAge was also higher 
with greater air pollution [11] and body mass index 
(BMI)[20].

Caloric restriction, with no specific dietary pattern, 
has also been demonstrated to halt aging by attenuating 
age-associated epigenetic alterations [21]. In a 16-week 
intervention trial, vitamin D3 supplementation among 
70 overweight and obese individuals led to slower epi-
genetic aging [22]. It has been suggested the Mediter-
ranean (MED) diet might increase lifespan and improve 
aging [23] due to its unique combination of fatty acids, 

antioxidants, vitamins and phytochemicals. However, 
findings regarding the association of lifestyle factors, 
such as smoking, physical activity and diet, with mAge 
are inconsistent or marginal [20, 24] and mostly shown 
in longitude and cross-sectional studies.

The relationship of mAge with ectopic fat accumula-
tion is unknown. Body fat deposits are strong indicators 
of metabolic state and cardiometabolic risk [25]. Visceral 
adipose tissue (VAT) is a prominent predictor of type 2 
diabetes mellitus, cardiovascular disease and reflects 
the extent of other ectopic fats as in the liver, heart and 
pancreas [26, 27]. Increased liver fat is associated with 
metabolic syndrome [28–32] and insulin resistance [33]. 
We have reported the 18-month CENTRAL MRI trial 
results, in which we assessed the differential mobiliza-
tion of VAT, intrahepatic fat (IHF) and other specific fat 
depots by different lifestyle interventions, linking the 
changes to specific clinical biomarkers [34]. In this sub-
study of the CENTRAL trial, we aimed to explore the 
relation of mAge (calculated by a 240-CpG-based pre-
diction formula) and its changes with IHF and abdomi-
nal fat deposits, anthropometric parameters and blood 
biomarkers reflecting cardiometabolic risk (e.g., glycemic 
and lipid markers) among abdominally obese participants 
undergoing a weight-loss intervention.

Results
Baseline characteristics
At baseline, the mean chronological age was 
48.3 ± 9.5  years for men (n = 110) and 51.5 ± 6.9 for 
women (n = 10). Mean mAge was 60.1 ± 7.6  years for 
men and 62.4 ± 6.3  years for women. The participants 
had a mean waist circumference (WC) of 107.2 ± 7.1 cm 
for men and 101.7 ± 15.0  cm for women. Abdominal 
fat proportion was distributed between genders as fol-
lows: VAT: 35.4 ± 10.1% vs. 22.2 ± 4.8% (p = 9.9 × 10–5), 
deep subcutaneous adipose tissue (SAT): 40.1 ± 6.1% vs. 
38.9 ± 6.2% (p = 0.57), superficial SAT: 24.4 ± 5.9% vs. 
38.9 ± 6.2% (p = 2.0 × 10–6; all men vs. women, respec-
tively). 58.8% of the participants were defined with fatty 
liver (> 5% IHF), with no difference in IHF% between sex 
groups were observed (10.6 ± 10.1 and 11.6 ± 16.0 men 
vs. women; p  = 0.52). No significant baseline differences 
were observed between intervention groups in mAge 

Conclusions:  Lifestyle weight-loss intervention may attenuate mAging. Deviation of mAge from chronological age 
might be related to body fat distribution and glycemic control and could indicate biological age, health status and 
the risk for premature cardiometabolic diseases.
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(p = 0.77 for low fat (LF) vs. MED/low carbohydrates 
(MED/LC)) or age (p = 0.69).

At baseline, chronological age was strongly correlated 
with mAge (r = 0.93, p = 3.1 × 10–53, Fig. 1a). Chronologi-
cal age was negatively correlated with weight (r = − 0.21, 
p = 0.02) and with deep SAT proportion (r = − 0.29, 
p = 0.002), superficial SAT area and proportion 
(r = − 0.26, p = 0.004; r = − 0.37, p = 3.5 × 10–5) and posi-
tively correlated with VAT area and proportion (r = 0.38, 
p = 1.9 × 10–5; r = 0.42, p = 2.0 × 10–6). Similarly, mAge 
was positively correlated with VAT proportion and area  
(r = 0.41; p  = 4.0 × 10–6; r = 0.38, p = 1.9 × 10–5) and neg-
atively with deep SAT proportion (r = − 0.27, p = 0.003), 
superficial SAT area and proportion (r = − 0.23, p = 0.01; 
r = − 0.38, p = 2.3 × 10–5).

Baseline associations of the mAge deviation with adiposity 
and blood biomarkers
Examining sex-specific tertiles of the mAge deviation, 
measured by standardized residuals from the predicted 
values (calculated using the 240-CpGs formula; Table 1), 
we observed that participants in the lowest tertile of 
mAge deviation from their chronological age had signifi-
cantly lower WC (105.2 ± 6.8 cm vs. 109.4 ± 8.3 cm), VAT 
area (166.3 ± 50.4cm2 vs. 196.4 ± 69.0 cm2) and IHF% 
content (8.3 ± 8.0% vs. 14.5 ± 12.8%), as compared with 
participants in the highest sex-specific residual tertile. 
Out of all the examined blood array of biomarkers, only 
glycemic biomarkers (e.g., fasting glucose) were signifi-
cantly different between mAge deviation tertiles (p < 0.05 
for all). (Table 1). A sensitivity analysis among men only 
(92% of participants) is presented in Additional file  1: 
Table S1.

In multiple linear regression models (Table 2), greater 
mAge deviation remained significantly associated with 
increased IHF% (sex, weight and age adjusted model: 
β = 0.23, p = 0.02). Fasting glucose remained marginally 
associated with mAge deviation.

Since IHF% and fasting glucose showed significant/
marginal association in all three models, we used fur-
ther adjustment to lifestyle factors (smoking or alcohol 
intake). These did not attenuate the associations with 
IHF. Furthermore, adding daily alcohol intake resulted 
in a significant association with mAge deviation in all 
three models for fasting glucose. Of note, no differ-
ences in mAge or mAge deviation between smokers and 
non-smokers were observed (p = 0.51 and p = 0.48), and 
no correlation between mAge or mAge deviation with 
alcohol intake were found (r = 0.12, p = 0.2; r = − 0.11, 
p = 0.24).

Next, we used the three models presented in Table  2 
to examine the association between mAge deviation and 
IHF% and added medical conditions as the presence of 
type 2 diabetes or metabolic syndrome. These models 
remained significant and fully reported in Additional 
file 2: Table S2.

Evaluation of baseline results using 353‑CpG‑based mAge 
formula
Next, we re-examined our data in a 353-CpG-based 
mAge prediction formula; the first mAge formula 
described, well based and commonly used named 
the “Horvath clock” [9]. A significant correlation was 
observed between chronological age and the 353-CpG-
based mAge (r = 0.90, p = 3.5 × 10–44). 353-CpG-
based mAge was also correlated with superficial SAT 
area (r = − 0.23, p = 0.01) and proportion (r = − 0.45, 
p = 2.4 × 10–7) as well as with VAT area (r = 0.37, 

a

b

Fig. 1  Correlation between baseline age and mAge. a Baseline 
correlation between age and mAge. b Correlation between age and 
mAge after 18 m of lifestyle intervention
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p = 3.6 × 10–5) and proportion (r = 0.42, p = 1.0 × 10–6) 
and deep SAT proportion (r = − 0.24, p = 0.007). A 
summarize of the baseline correlations of mAge with 

adiposity and fat deposits according to two mAge 
prediction formulas is presented in Additional file  3: 
Table S3. Also, a marginal difference was observed for 
IHF% tertiles (p = 0.089), with IHF levels among partic-
ipants in the lower sex-specific mAge deviation tertile 

Table 1  Baseline characteristics of the CENTRAL participants across sex-specific tertiles of mAge deviation

Data are mean ± SD. aANOVA or Kruskal Wallis. bT-test or Mann–Whitney. cn = 119. dn = 114. Lowest tertile: men: ≤ − 0.44; women ≤ − 0.77; intermediate tertile: 
men: − 0.43 to 0.46, women: − 0.76 to 0.55; Highest tertile: men: 0.47+, women: 0.56+. Significant associations (p < 0.05) are represented in bold. Non-significant 
associations with p < 0.1 are represented in italics

BMI body mass index, DSAT deep subcutaneous adipose tissue, HbA1c hemoglobin A1c, HOMA IR homeostatic model assessment of insulin resistance, IHF intrahepatic 
fat, SSAT superficial subcutaneous adipose tissue, VAT visceral adipose tissue, WC waist circumference

Entire
n = 120

Low
tertile
n = 40

Intermediate tertile
n = 41

High tertile
n = 39

p between tertilesa p 
between extreme 
tertilesb

Age, years 48.6 ± 9.3 45.1 ± 10.2 50.7 ± 9.0 47.3 ± 8.4 0.19 0.92

mAge, years 60.3 ± 7.5 56.5 ± 7.5 62.2 ± 6.9 62.3 ± 6.8 2.6 × 10–4 0.001
Weight, kg 90.3 ± 11.4 88.3 ± 9.5 89.3 ± 12.9 92.9 ± 11.5 0.17 0.06
BMI, kg/m2 30.2 ± 3.3 29.8 ± 2.6 29.8 ± 3.4 30.9 ± 3.9 0.44 0.26

WC, cm 106.7 ± 8.1 105.2 ± 6.8 105.6 ± 8.6 109.4 ± 8.3 0.03 0.008
VAT, cm2 176.2 ± 61.2 166.3 ± 50.4 166.6 ± 59.8 196.4 ± 69.0 0.07 0.04
VAT proportion, % 34.3 ± 10.5 33.8 ± 10.7 33.5 ± 9.7 35.8 ± 11.2 0.59 0.44

DSAT, cm2 210.9 ± 70.0 204.3 ± 64.7 210.0 ± 78.4 218.6 ± 66.9 0.70 0.42

DSAT proportion, % 40.0 ± 6.1 39.8 ± 6.1 40.1 ± 5.8 39.4 ± 6.3 0.57 0.79

SSAT, cm2 134.9 ± 56.5 136.3 ± 55.6 130.0 ± 51.5 138.5 ± 63.2 0.79 0.87

SSAT proportion, % 25.6 ± 7.1 26.4 ± 7.3 25.7 ± 7.3 24.8 ± 6.9 0.63 0.33

IHFc, % 10.71 ± 10.6 8.3 ± 8.0 9.3 ± 9.8 14.5 ± 12.8 0.03 0.02
Fasting glucose, mg/dL 106.5 ± 16.2 100.8 ± 10.3 110.1 ± 18.9 108.4 ± 16.9 0.02 0.01
HOMA IRd 4.8 ± 3.5 3.9 ± 2.1 4.7 ± 3.5 5.9 ± 4.3 0.08 0.03
HbA1c, % 5.6 ± 0.5 5.5 ± 0.4 5.7 ± 0.5 5.6 ± 0.5 0.29 0.47

Table 2  Multivariate models for the assessment of mAge deviation with adiposity and glycemic markers

*Cannot be tested in a multivariate model due to collinearity of weight with WC/BMI. BMI body mass index, DSAT deep subcutaneous adipose tissue, HbA1c 
hemoglobin A1c, HOMA IR homeostatic model assessment of insulin resistance, IHF intrahepatic fat, SSAT superficial subcutaneous adipose tissue, VAT visceral adipose 
tissue, WC waist circumference. Significant associations (p < 0.05) are represented in bold. Non-significant associations with p < 0.1 are represented in italics

Model 1: Standardized residuals—adjusted for sex

Model 2: Standardized residuals—adjusted for sex and weight

Model 3: Standardized residuals—adjusted for sex, weight and age

Model 1 Model 2 Model 3

β p value β p value β p value

Weight, kg 0.05 0.62 – – – –

BMI, kg/m2 0.09 0.35 * * * *

WC, cm 0.14 0.13 * * * *

VAT, cm2 0.15 0.12 0.14 0.14 0.18 0.11

DSAT, cm2 0.07 0.48 0.06 0.63 0.06 0.63

SSAT, cm2 0.04 0.97 − 0.05 0.73 − 0.05 0.74

IHF, % 0.3 0.02 0.23 0.02 0.23 0.02
Fasting glucose, mg/dL 0.16 0.08 0.16 0.08 0.18 0.07
HOMA IR 0.15 0.12 0.14 0.16 0.15 0.15

HbA1c, % 0.06 0.49 0.07 0.48 0.07 0.48
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(mean mAge deviation ≤ − 0.4 for men and ≤ − 0.53 
for women) significantly lower (n = 38; 8.01 ± 8.8%), as 
compared with IHF% in the highest sex-specific tertile 
(n = 41; men: ≥ 0.41; women: ≥ − 0.21; mean IHF% of 
12.1 ± 10.3%; p  = 0.03).

The effect of 18‑month lifestyle intervention on mAge 
change (∆mAge, based on 240‑CpGs formula)
After 18  months of lifestyle intervention, the entire 
cohort had a mean weight loss of 4%, relative VAT 
change of − 26.2 ± 17%, and relative IHF% change of 
− 18.3 ± 84.1% (p < 0.05 vs. baseline for all). The mean 
mAge increased significantly by 1.1 ± 1.9  years and 
remained strongly correlated with chronological age 
(r = 0.94, p = 1.5 × 10–55) (Fig.  1b). We could not detect 
any significant associations between changes in adiposity 
parameters or blood biomarkers with a change in mAge.

The change of mAge did not differ significantly across 
the intervention groups: the mean mAge in the MED/
LC group increased by 0.9 ± 1.9 years and 1.3 ± 1.9 years 
in the LF group, with no significant differences between 
groups in mAge change (p = 0.2) or weight loss (p = 0.47). 
Of note, a similar finding was observed for the four inter-
vention groups in terms of within-group increase from 
baseline (LF: + 1.2 ± 1.9, p = 0.002; MED/LC: + 1.0 ± 1.9, 
p = 0.006; LF + PA: + 1.4 ± 2.0, p = 0.001; MED/
LC + PA: + 0.7 ± 1.9, p = 0.045) and between groups 
(p = 0.57). Further subgroup analysis by chronologi-
cal age is presented in Additional file  4: Supplementary 
results.

Among successful weight-loss responders (those who 
lost more than 5% of initial body weight, 32.5% of our 
cohort, mean weight loss of − 9.6%), the median increase 
of mAge was 0.6  years (25th,75th percentiles: − 0.61, 
2.1), was significantly lower than the median change 
of 1.1  years (− 0.02, 2.9) among the weight-loss failures 
(those who lost less than 5% or gained weight; − 1.2% 
weight loss), p = 0.04 between groups (Fig.  2a). Further 
adjustment for sex, baseline mAge and 18-month weight 
loss did not attenuate the significant difference (p = 0.04). 
A similar multivariate model, excluding baseline mAge, 
yielded similar results (p = 0.03).

Participants with IHF% under 5% at the end of the 
intervention (“healthy liver status”; mean IHF of 3.3%, 
Fig. 2b) had significantly lower 18-month mAge increase 
of 0.6  years (− 0.64, 2.0), as compared with a median 
change of 1.8  years (0.4, 3.0) among participants with 
fatty liver (IHF at the end of the intervention of > 5%; 
mean IHF of 7.3%), p = 0.003 between groups. This sig-
nificant difference remained after further adjustment 
for age, sex, baseline mAge and 18-month IHF% loss 
(p = 1.6 × 10–4). The association remained significance 
after excluding baseline mAge from the multivariate 

model (p = 0.002). Observed mAge change (∆mAge) in 
relation to the predicted mAge change according to base-
line linear prediction equation is presented in Additional 

Fig. 2  18-month change in mAge between subgroups. a Weight-loss 
successors (n = 39) vs. weight-loss failures (n = 81). b participants 
with healthy liver fat% at the end of the intervention (n = 75) vs. 
fatty liver (n = 45 for fatty liver). Boxplots whiskers represent min to 
max. * denotes within-group difference (T18 vs. T0). Dots represent 
individual values
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Fig. 3  The observed mAge change following the intervention vs. 
the expected mAge change among men above median age. The 
observed mAge change is the actual difference observed between 
timepoints for this subgroup. The expected mAge change was 
calculated using the linear regression prediction formula generated 
from baseline correlation between age and mAge. Data presented as 
means and SDs
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file 4: Supplementary results and Additional file 5: Figure 
S1. Among older men (above the median age of 48 years), 
the observed mAge was significantly lower than the 
assumed expected (p = 0.048), where mAge increased 
by 7.1 ± 23.4  months from baseline, while the expected 
mAge change was assumed as 14.8 ± 35.8 months (Fig. 3).

Discussion
In this 18-month trial among 120 participants with 
abdominal obesity or dyslipidemia, we found that lifestyle 
weight-loss intervention may attenuate mAging. Devia-
tion of mAge from chronological age might be related 
to body fat distribution and glycemic control and could 
indicate biological age, health status and the risk for pre-
mature cardiometabolic diseases.

This analysis had several limitations. We used a pre-
diction formula that was previously tested and validated 
only in normal-weight populations [11], as opposed to 
the participants of our study population who are abdomi-
nally obese. We reported sex-based differences despite 
having a potentially underpowered group of female sex 
due to low numbers. This low number of women partici-
pating in our trial reflects the low number of women in 
the workplace where we recruited our participants. Also, 
our array allowed the detection of only 217 of the 240 
CpGs in the original prediction formula. Nonetheless, 
we observed a robust correlation between age and mAge, 
similar to one previously published across multiple popu-
lations of different ethnicities [11], with additional evalu-
ation of the baseline results based on Horvath’s mAge 
prediction formula.

Aging is associated with changes in body composi-
tion (fat, muscle mass and bone density) [35], cognitive 
decline [36], decreased renal function [37], cancer [33] 
and more. In the past years, some biological age predic-
tors (e.g., telomere length, metabolomics, specific blood 
biomarkers) were examined to find age-associated out-
comes [39]. For this analysis, we used the 240 CpG-based 
formula that was previously trained and validated among 
989 blood samples of the Chinese population and 160 
Caucasians [11], both with weight within the normal 
range, with an excellent correlation coefficient (above 
0.94). Among our 120 participants with abdominal obe-
sity, we found a similar correlation between age and 
mAge both at baseline and at the end of the intervention. 
These results confirm our mAge prediction formula’s 
ability to predict age in various populations and pheno-
types accurately.

In our study, mAge was found to be associated with 
some abdominal fat depots, according to two mAge pre-
diction calculations. For the mAge deviation, besides an 
association with WC, VAT and biomarkers of glycemia, 
which slightly attenuated after further adjustments, we 

observed that beyond sex, age, weight and lifestyle fac-
tors, participants with higher mAge than age had higher 
IHF%. There is much interest in exploring IHF levels 
since elevated triglycerides in the liver [“fatty liver” [40]] 
is a common reversible condition [mostly by weight 
reduction [41]]. Still, without proper treatment, it might 
progress to hepatocellular carcinoma [40, 42]. This find-
ing could be due to other diseases’ effects on these varia-
bles, e.g., hypertension or metabolic syndrome. However, 
due to this study’s nature, we can only discuss associa-
tions and used adjustment in our models to reduce con-
founders, as presented in the results section. As most 
previous studies examined anthropometrically, blood 
markers and some diseases in relation to epigenetic age, 
we were able to add on current knowledge and examine 
some MRI assessed fat deposits, known to indicate health 
risks.

The CENTRAL study [25] was designed to examine 
fat mobilization following weight loss derived from life-
style intervention strategies. As this one phase trial was 
conducted for 18 months, it is logical to assume that all 
participants aged both chronologically and biologically 
as time passed. Yet, some participants, and more spe-
cifically—weight-loss successors and healthy liver ones, 
demonstrated lower aging than others. Although we 
could not detect changes in mAge attenuation between 
diet groups, we observed significant differences between 
some groups, representing health status. We used thresh-
olds for liver status and weight-loss success for this analy-
sis according to previously published. A 5% weight loss 
is an apparently meaningful marker for health improve-
ment, although greater weight loss might yield better 
health outcomes [43]. The liver status cut-off was set to 
5% IHF, which is acceptable for fatty liver initial diagno-
sis with radiological imaging techniques [40]. With the 
understanding that aging, accompanied by age-related 
conditions and diseases, is inevitable, extensive research 
has been trying to find treatment or mechanism to halt 
age-related conditions, including dietary changes, as a 
potential strategy for slowing down aging. The CEN-
TRAL study participants experienced a modest 18-month 
weight loss [25] following two types of calorie restriction 
strategies. Potentially, this weight loss (and other adverse 
advantages accompanied by this weight reduction, as a 
decrease in fatty liver status and improved cardiometa-
bolic risk) improved aging among our participants. This 
evidence might promote a better understanding of the 
role of weight loss in improving life longevity. Yet, these 
results should be interpreted with caution since we can-
not determine whether the weight loss was the main 
driver for the beneficial biological effect or the relief in 
cardiometabolic risk and/or the reductions in fatty liver 
prevalence.
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Conclusions
Methylation levels in specific CpGs can predict age in 
an overweight population. mAge deviation is associated 
with additional health traits, as fatty liver and impaired 
fasting glucose. mAge, measured by methylation level 
of specific CpGs, might serve as a biological marker for 
health. Weight loss and healthier liver might promote an 
increase in lifespan, reflected by this biological marker.

Methods
Study design and participants
The 18-month CENTRAL trial [clinicaltrial.gov identi-
fier: NCT01530724] was conducted between October 
2012 and April 2014 in a research center workplace in 
Dimona, Israel, and described previously in detail [25]. 
Recruitment began in May 2012, and by the start of the 
trial 278 sedentary individuals were eligible to participate. 
Inclusion criteria were: abdominal obesity [WC > 102 cm 
(40 inches) for men and > 88 cm (35 inches) for women], 
or serum triglycerides > 150  mg/dL and high-density-
lipoprotein cholesterol (HDL-c) < 40  mg/dL for men 
and < 50  mg/dL for women. Exclusion criteria were: 
serum creatinine ≥ 2  mg/dL, impaired liver function 
(≥ threefold the upper level of Alanine transaminase and 
Aspartate transaminase), active cancer, pregnancy or lac-
tation, highly physically active (> 3  h/week), or unable 
to take part in physical activity (PA), or participation in 
another trial. The study protocol was approved by the 
Medical Ethics Board and the Helsinki Committee of the 
Soroka University Medical Center. All participants pro-
vided written informed consent and received no financial 
compensation or gifts.

Randomization and intervention
As previously described [25], participants were randomly 
assigned in two phases: first, two equally hypocaloric 
diets: a LF diet or a MED/LC diet. Second, after 6 months 
of dietary intervention, the two dietary groups were fur-
ther randomized into diet only groups (LF, MED/LC) or 
groups with additional moderate physical activity inter-
vention, mostly (80%) aerobic (LF + PA, MED/LC + PA).

Magnetic resonance imaging and clinical measurements
A 45-min 3-T magnetic resonance imaging (MRI, Ingenia 
3.0 T, Philips Healthcare, Best, the Netherlands) was used 
to scan all participants at baseline and after 18 months. 
Technical description of the scanning procedure, abdom-
inal fat depots (VAT, DSAT, SSAT), IHF% acquisition 
and clinical measurements (anthropometric parameters, 
blood markers of glycemia and lipids, etc.) are available 
in Additional file 6: Supplemental methods.

DNA sampling and extraction
Blood samples were taken after an overnight fast at 
baseline (T0) and 18 months (T18) after the individuals 
completed their interventions. Samples were stored at 
− 80 °C until DNA was extracted from peripheral blood 
samples following a standard protocol using proteinase 
K and 0.2% SDS at Hadassah Hebrew University Medi-
cal Center, Jerusalem. Samples were integrity-controlled 
using gel-electrophoresis, and the concentrations of 
double-stranded DNA were measured using Quant-
iT PicoGreen dsDNA (Invitrogen, ThermoFisher Sci-
entific, Germany) and Quantus (Promega, Germany) 
technologies.

Sample selection and genome‑wide DNA methylation
This is a sub-study of the CENTRAL trial (Fig. 4), includ-
ing 120 participants, according to the following criteria: 
both baseline and 18 months available blood samples and 
additional consent to genetic analysis. Sample selection 
was detailed elsewhere [44].

Five hundred ng of genomic DNA from each sam-
ple was bisulfite converted using EZ DNA Methylation 
Gold Kit (Zymo Research, Netherlands). Data were first 
assessed for quality at GenomeScan (Leiden, Nether-
lands) using the MethylAid package [45]. All quality 
control (QC) parameters were within predicted specifica-
tions, and more than 807.5 K sites (95%) were detected. 
Cell-type compositions were computed using minfi’s esti-
mate CellCounts function and the following cell types: 
CD8T cells, CD4T cells, NKcells, Bcells, Monocytes, 
Neutrophils. Datasets above or below 3 standard devia-
tions from the mean relative amount (|z-score|> 3) in 
one cell type were excluded from further analysis. Fol-
lowing quality QC, amplification, and hybridization on 
Illumina MethylationEpic BeadChips (Illumina, Inc., San 
Diego, CA, U.S.A) the Illumina iScan array scanner was 
used to quantify genome-wide DNA methylation levels 
at ~ 850,000 CpG sites per sample on single-nucleotide 
resolution (GenomeScan, Leiden, Netherlands). Prior to 
all analysis steps aimed at identifying specific CpG sites 
(comparison independent), beta values were computed 
and quantile normalized using Minfi R package [46, 47]. 
DNA-Methylation analysis was performed at Leipzig 
University, Germany.

Methylation age calculations
We used a prediction formula [11] based on methyla-
tion level at 240 specific CpGs sites, developed using 
whole blood samples and validated in multiple popu-
lations. To compute mAge, we used pre-quantile nor-
malized beta values because the population mean and 
standard deviation for the CpG might be different from 
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different populations. Out of the 240 CpGs in the for-
mula, 217 were available after QC steps in our data: We 
multiplied each specific coefficient with our beta values 
for corresponding CpGs and summed up together to 
get the mAge before calibration (mAge BC). Finally, we 
computed mAge after calibration with the following: 
mAge BC*21 + 20. A further evaluation of baseline data 
was performed using Horvath’s mAge prediction formula 
based on 353 CpGs [9], with 334 CpGs available.

Statistical analysis
This analysis’s primary aim was to examine the asso-
ciation between age and mAge, calculated according to 
the prediction formula based on 240 CpGs (217 CpGs 
detected) [11]. Secondary aims included the associa-
tion between mAge, fat deposits and metabolic blood 
biomarkers. Finally, we examined 18-month differences 
in mAge between intervention diet groups and other 
sub-groups, and differences in observed mAge change 
and assumed expected change. Continuous variables 
are presented as means ± standard deviations. Nomi-
nal variables are expressed as numbers and percentages. 
The Kolmogorov–Smirnov test was used to determine 
the variable’s distribution. Pearson and Spearman’s tests 
were used to examine the correlation between normally 
and not normally distributed variables, respectively. 

Differences between groups were tested using T-test, 
Mann–Whitney (for 2 groups comparisons)), Analysis 
of Variance (ANOVA) or Kruskal Wallis. Within group 
changes (baseline—T0 vs. end of the intervention—T18) 
were tested using Paired samples T-test.

For the association between baseline variables and 
methylation age acceleration, we used the standard-
ized residual of mAge accounting for chronological age, 
reflecting the difference between methylation aging 
and chronological aging (“mAge deviation”, Additional 
file 6: Supplementary methods). Sex-specific tertiles of 
mAge deviation were evaluated using between group 
comparisons detailed above. To assess 18-m change in 
mAge, we examined 18-month absolute mAge change 
(mAge at T18—mAge at baseline = ∆mAge). For 
adjustments, we used multiple linear regression mod-
els. Although the mAge change was normally distrib-
uted, we presented the un-even subgroups (weight and 
liver status) as medians, 25th and 75th percentiles due 
to large standard deviations.

In order to examine differences between observed 
mAge at the end of the intervention, and the expected 
mAge resulting in case of no intervention occurred, we 
used the linear regression prediction formula gener-
ated from baseline correlation between age and mAge: 
y = 23.73 + 0.75 × baseline age plus the interval time 
between blood draws (24  month, a constant for all 
participants).

CENTRAL participants (n=278) 

Excluded from the analysis (n=158) 
-   Did not sign informed consent for DNA 

analysis (n=138) 
-   Reasons related to the analysis (n=20) 

Low fat (LF) diet (n=60) Mediterranean/low carbohydrate (MED/LC) diet (n=60) 

Included in the epigenetic 
analysis (n=120) 

Low fat diet + PA 
(n=30)

Low fat diet - PA 
(n=30)

MED/LC diet + PA 
(n=30)

MED/LC diet - PA 
(n=30)

Baseline

6 months 

18 months 

Fig. 4  Flow diagram of the CENTRAL epigenetic cohort
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Statistical analysis was performed using SPSS (ver-
sion 26.0) software. Statistical significance was set 
for p ≤ 0.05, two-sided. Plots were constructed using 
GraphPad Prism 7.
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