Neurodevelopmental Gene-Related Dystonia-Parkinsonism with Onset in Adults: A Case with NAA15 Variant

Genomic sequencing and animal-model studies have begun to define a strong neurodevelopmental basis of dystonia. In addition, neurodevelopmental defects are also thought to represent factors contributing to the manifestation of Parkinson’s disease (PD) and parkinsonian syndromes. Knowledge about single-gene disorders presenting with neurodevelopmental dystonia and/or parkinsonism is still limited, hindering individualized patient care and comprehensive mechanistic understanding.

We have enrolled a male proband demonstrating adult-onset generalized dystonia combined with akinetic-rigid symptoms in our research program aiming to unravel the etiologies of dystonic syndromes. The proband’s movement-disorder features started at the age of 46 years, without prior medication intake. He developed dystonic posturing of the lower extremities left-right, and subsequently also posturing of both arms and the trunk with intermittent lateroflexion/camptocoria. These symptoms were followed by manifestation of postural instability, swallowing difficulties, and muscle stiffness. Over time, dystonia became less prominent, whereas slowness of movements and gait dysfunction worsened. Examination at the age of 52 years revealed constant dystonia affecting predominantly the left arm associated with marked parkinsonism (Video S1). During childhood, the proband had experienced gross-motor and speech delays but he had never visited special pediatric services. He showed mild coarse facial features (Video S1) but no evidence of significant cognitive impairment (Montreal Cognitive Assessment [MoCA] score 27/30), autism, or cardiac abnormalities, consistent with the heterogeneous nature of NAA15-related disease. There was no family history of neurological disorders. Evaluations including blood biochemistry, metabolic screenings, and genetic testing for spinocerebellar ataxias (SCA 1,2,3,6) and LRRK2-associated PD yielded unremarkable results. Chromosomal microarray analysis was unrevealing. Brain imaging could not be performed because the patient did not tolerate the procedure due to abnormal postures. A trial of L-dopa/carbiprodopa produced improvement with decreased tone, although no sustained response was seen.

By trio whole-exome sequencing, the proband was found to carry a de novo pathogenic nonsense variant in NAA15: NM_057175.5:c.382C>T, p.Arg128*. The same variant has previously been identified in two unrelated patients (one published and one from our in-house pediatric cohorts) with classic neurodevelopmental-disease features but no movement disorder. No alternative genetic causes were observed upon in-depth analysis of the exome data (including ExomeDepth-based copy number variation [CNV] assessment), especially no potentially pathogenic variants in established dystonia/parkinsonism-related genes.

NAA15 encodes N-alpha-acetyltransferase-15, an essential component of the N-terminal-acetyltransferase-complex A mediating the attachment of acetyl-groups to the N-termini of various substrate proteins. N-terminal acetylation has significant impact on protein properties such as folding, complex formation, and activity, and dysfunction of this process has been associated with both neurodevelopmental and neurodegenerative pathological effects including alterations in the stability of α-synuclein. NAA15-related disease has been characterized as an infantile-/childhood-onset disorder that presents with variable combinations of milestone delay, intellectual impairment, and dysmophia. To date, abnormal (limb dystonic) movements have been reported in only a single affected child.

Our case study expands the phenotype of NAA15-related disease and serves to enhance awareness of the natural history of this syndrome which can involve adult-onset movement-disorder presentations. Moreover, the findings add NAA15 to the growing list of genes whose variants can underlie both typical pediatric neurodevelopmental conditions and phenotypes with parkinsonism/dystonia-parkinsonism later in life.

Notable, yet only recently emerging examples of this group of neurodevelopmental genes include NR4A2, PLXNA1, PPP2R5D, WARS2, and YY1, which are associated in certain adult cases with dopa-responsive dystonia-parkinsonism, atypical parkinsonian syndromes with dystonia, and parkinsonism resembling PD (Table 1). Further elucidation of this novel class of genetically determined entities is important to gain broader insights into pathogenesis and stratify patients according to etiological subtype and treatment response. We encourage additional collaborative research to improve identification of the spectrum and outcomes of neurodevelopmental gene-linked dystonia-parkinsonism, with the eventual goal of designing more efficient therapies.

© 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Key Words: dystonia, parkinsonism, NAA15, neurodevelopmental disorder

Correspondence to: Dr. Michael Zech, Institute of Neurogenomics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; E-mail: michael.zech@mri.tum.de

Igor Straka and Jana Švantnerová contributed equally to this work as first authors.

Relevant conflict of interest/financial disclosures: Nothing to report.

Funding agency: MZ receives research support from the German Research Foundation (DFG 458949627; ZE 1213/2-1).

Received: 11 March 2022; Revised: 20 May 2022; Accepted: 30 May 2022

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.29125

LETTERS: NEW OBSERVATION

Movement Disorders, 2022 1
TABLE 1 Recently emerging examples of early-/OR late-onset parkinsonism/dystonia-parkinsonism syndromes associated with variants in neurodevelopmental genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Encoded protein</th>
<th>Features of the associated neurodevelopmental disorder (OMIM)</th>
<th>Parkinsonism/dystonia-parkinsonism phenotypes</th>
<th>Reported by (PubMed identifier)</th>
<th>Number of reported patients</th>
<th>Specific presentations</th>
<th>L-dopa response</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA15</td>
<td>N-alpha-acetyltransferase 15, NatA auxiliary subunit</td>
<td>Developmental delay, intellectual disability, behavioral problems, seizures, dysmorphia (intellectual developmental disorder, autosomal dominant 50, with behavioral abnormalities, 617787)</td>
<td>Present study</td>
<td>1 case</td>
<td>Dystonia-parkinsonism</td>
<td>Yes (partial)</td>
<td></td>
</tr>
<tr>
<td>NR4A2</td>
<td>Nuclear receptor subfamily 4, group A, member 2</td>
<td>Developmental delay, intellectual disability, seizures, behavioral problems (N/A)</td>
<td>Wirth et al. (PMID: 31922365)</td>
<td>2 cases</td>
<td>Dystonia-parkinsonism</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PLXNA1</td>
<td>Plexin A1</td>
<td>Developmental delay, intellectual disability, seizures, dysmorphia, midline anomalies, autism (N/A)</td>
<td>O’shea et al. (PMID: 34415653)</td>
<td>1 case</td>
<td>Parkinsonism resembling Parkinson’s disease</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PPP2R5D</td>
<td>Protein phosphatase 2, regulatory subunit B (B56), delta</td>
<td>Developmental delay, intellectual disability, seizures, dysmorphia (mental retardation, autosomal dominant 35, 616355)</td>
<td>Kim et al. (PMID: 32743835), Walker et al. (PMID: 33098144), Hetzelt et al. (PMID: 3338668)</td>
<td>5 cases</td>
<td>Parkinsonism resembling Parkinson’s disease</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>WARS2</td>
<td>Tryptophanyl-tRNA synthetase 2</td>
<td>Developmental delay, intellectual disability, seizures, infantile motor abnormalities (neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures, 617710)</td>
<td>Burke et al. (PMID: 29120065), Virdee et al. (PMID: 31282308), Martinelli et al. (PMID: 32120303), Hübers et al. (PMID: 31970218), Skorvanek et al. (PMID: 34890876)</td>
<td>6 cases</td>
<td>Infantile-onset parkinsonism, parkinsonism resembling Parkinson’s disease, dystonia-parkinsonism, complex dystonia</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>YY1</td>
<td>Transcription factor YY1</td>
<td>Developmental delay, intellectual disability, behavioral problems, dysmorphia, congenital malformations (Gabriele-de Vries syndrome, 617557)</td>
<td>Indelicato et al. (PMID: 35172867)</td>
<td>1 case</td>
<td>Dystonia-parkinsonism</td>
<td>Not reported</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: N/A, not available.
Acknowledgments: We thank the patient and his family for their generous participation and permission to publish this case. Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement
Data available on request from the authors.

Igor Straka, MD,1 Jana Švantnerová, MD,1 Michal Minár, MD,1 Simona Stanková, MD,1 and Michael Zech, MD2,3*

1Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia,
2Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany, and
3Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany

References
2. Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson’s disease: a role for neurogenesis.

Supporting Data
Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.
Author Roles

I. Straka: acquisition of data, clinical examination, analysis and interpretation of data, revision of manuscript for critical intellectual content
J. Švantnerová: study design and concept, acquisition of data, clinical examination, analysis and interpretation of data, revision of manuscript for critical intellectual content
M. Minář: acquisition of data, revision of manuscript for critical intellectual content
S. Stanková: acquisition of data, clinical examination, revision of manuscript for critical intellectual content
M. Zech: study design and concept, study supervision, analysis and interpretation of data, wrote original manuscript

Financial Disclosures

Disclosures (for the preceding 12 months): Nothing to report.