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Figure 5. Functionality of the miRco web application. (A) A search for cooperative miRNA-target interactions is performed by selecting miRNA candi-
dates, relevant target genes or both. The user is able to specify parameters for the range in which the spacing between two adjacent miRIsc binding 
sites (d) is assumed to lead to cooperative target repression. Default values are 15−26 nucleotides. predictions for three species are available: human, 
mouse, and rat. (B) screenshot of the user interface of the online tool.
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prediction is performed on a multiple sequence alignment of 
18413 3'-UTRs from 23 species. For miRanda/mirSVR, we used 
the predictions for conserved miRNAs with a good mirSVR 
score. The release contains 249 human miRNAs.

Random distribution of target sites. Randomly distributed 
target positions were used as a null model for cooperativity. We 
picked random positions within the real set of human 3'-UTRs. 
UTR data for all human genes (assembly GRCh37.p10) was 
downloaded from ENSEMBL BioMart (www.ensembl.org/). 
The number of positions per UTR was normalized to lie within 
the range of TargetScan predictions. This approach is completely 
independent of miRNAs, their sequences and pairing determi-
nants. Thus, this represents the most basic null model for bind-
ing site allocation and does not rely on any prior knowledge.

Random miRNA-like sequences. To augment the basic ran-
dom position control, we generated 1,000 completely random 
22 nucleotides long sequences. We only used sequences which are 
not known human miRNAs and do not contain seeds (nucleo-
tide 2–8) of known human miRNAs. We predicted targets for 
these seeds with the TargetScan 6.2 software and the UTR data 
provided by TargetScan. For the subsequent analyses, only ran-
dom sequences that produce the same numbers of targets (i.e., 
between 10–2,719) as human miRNAs were taken into account.

Sampling of groups. For analyses using single miRNAs, the 
complete data set was considered. Groups of two and five miR-
NAs or controls were sampled randomly 1,000 times from the 
complete set with no recurrence.

HITS-CLIP data set. The data set of Chi et al.28 is available at 
ago.rockefeller.edu, including mapping of miRNA binding sites 
onto genomic positions. The authors of this study used neocor-
tex of P13 mouse brain, crosslinked RNA binding proteins and 
RNA with UV irradiation and immunoprecipitated AGO-RNA 
complexes. Subsequently, RNA was purified and sequenced. 
Computational analysis produced a miRNA-mRNA interaction 
map. We used the mapping on mouse genome assembly mm9.

PAR-CLIP data set. The data set of Hafner et al.29 is avail-
able through starBase (starbase.sysu.edu.cn), a database provid-
ing gene mappings for a wide range of CLIP experiments.58 We 
used the “target site interaction” tool of starBase with settings for 
at least one microRNA read and “stringent miRNA targets” as 
described in the starBase publication.

Statistics. The distributions of pairwise distances (in a given 
distance window) as well as the percentage of cooperative tar-
gets were tested for a significant difference between miRNAs and 
controls with a one-sided Wilcoxon Rank Sum test.59 We used 
the wilcox.test function in the “stats” package of the R statistical 
computing software with a confidence interval of 0.95 to calcu-
late P values. P values < 2.2 × 10–16 occur due to the limits in 
floating point precision in R.

miRco web application. The miRco web tool is implemented 
as a JAVA EE application running on a Tomcat 6 servlet engine, 
using the same MySQL database described above. It employs 
TargetScan release 6.2. For a given set of mRNAs and miRNAs, 
miRco produces groups of miRNA binding sites that fulfill the 
user set distance criteria. Whenever two binding sites are at the 
exact same position or overlap (i.e., their distance is smaller than 

level of expression might suffice to exert the designated effect. 
This would potentially decrease side effects of the miRNAs or 
miRNA mimics and, thereby, lead to a more tolerable treatment.

In addition, combinations of miRNAs could be employed to 
improve experimental protocols. Similar to the idea of decreased 
side effects of therapeutic miRNAs, the combination of different 
miRNAs might increase the specific effect on the targets of inter-
est. Interestingly, the combined activity of multiple miRNAs has 
recently been reported to facilitate the reprogramming of fibro-
blasts to cardiomyocyte-like cells52 as well as the induction of plu-
ripotent stem cells (iPSCs).53,54

Recently, several studies highlighted the interaction of AGO/
miRNAs with other RNA binding proteins (RBP).55-57 In the 
future, the concept of cooperativity may extend to all RBPs in 
order to better predict mRNA regulation.

In the context of this work, we also developed miRco (mips.
helmholtz-muenchen.de/mirco), a web application meant to aid 
experimental research into the cooperative action of miRNAs. 
It predicts potentially cooperatively targeted mRNAs based on 
binding site distances and, thus, might help to identify key regu-
latory miRNA-mRNA networks. miRco serves as a starting point 
for wet lab scientists: It allows one to input miRNAs and search 
for cooperative targets. In addition, the user can specify a set of 
genes and find all miRNAs that target these genes in a coopera-
tive fashion. This dual approach helps to narrow down lists of 
candidate genes and miRNAs and makes it more feasible to test 
cooperativity in a complex biological context.

Taken together, our data indicate that cooperativity of 
miRNA-target interaction is a wide-spread phenomenon that 
may play an important role in miRNA-mediated gene regulation.

Materials and Methods

Criteria for the prediction of cooperativity. Cooperativity of 
two miRNAs is defined by the distance between the 5'-starts 
of their binding sites. We used 15 nucleotides as the lower and 
26 nucleotides as the upper limit of the cooperative distance, fol-
lowing experimental studies of distance-dependent cooperative 
effects and our data showing an enrichment of binding sites for 
human miRNAs in this window.

To determine whether a mRNA may be cooperatively regu-
lated, we take a single gene, acquire all binding sites of a given set 
of miRNAs on this mRNA and cluster them in groups where the 
distance between two adjacent sites lies within the cooperativity 
interval. If at least two binding sites fulfill this criterion, a mRNA 
is considered to be potentially regulated in a cooperative manner.

All data sets are stored in a MySQL database containing tables 
for genes, miRNAs and binding sites as well as their relations. 
Analyses are performed with Python programs combined with 
data plotting using R.

MiRNA target prediction. We used computational target pre-
diction of human miRNAs from TargetScan22,45 release 6.2 and 
miRanda/mirSVR release August 2010.26,27 For TargetScan, we 
used the predictions for conserved miRNAs and targets. Scores 
of target sites are the context+ scores calculated by TargetScan. 
The release 6.2 contains 1,536 conserved human miRNAs and 



1134 RNA Biology Volume 10 Issue 7

für Bildung und Forschung (MedSys project “LungSys” and 
programmes m4, Personalized Medicine and ANR-BMBF-
01KU0902A). This work was further supported in part by grants 
from the Fondation Leducq (to SE); the Bavarian Ministry of 
Sciences, Research and the Arts in the framework of the Bavarian 
Molecular Biosystems Research Network (to SE and FT), the 
Helmholtz Alliance on Systems Biology (project “CoReNe”), 
the German Science Foundation (DFG) within the SPP 1395 
(InKoMBio) and the Studienstiftung des Deutschen Volkes (to 
AR).

the lower limit), the binding site with the best context+ score 
calculated by TargetScan is used.
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