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Abstract

Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a
high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks
from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of
possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address
this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for
large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on
larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant
reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to
study the intracellular signaling of human primary nave CD4+ T-cells, as well as ErbB signaling in trastuzumab resistant
breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In
ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle
progression.
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Introduction

Functional knockdowns for example by RNA interference

(RNAi) are a powerful tool to identify genes involved in a specific

biological process. The technology has been widely employed in

large scale screening approaches, for example to identify genes

relevant for cellular growth and viability, for cell proliferation, in

bacterial or viral infection, in signaling, in cellular trafficking,

influencing the chemosensitivity of tumors, or determining stem

cell identity [1–13]. While functional knockdowns are very

successful to identify genes associated with a particular phenotype,

the spatial and temporal placement of hits in their surrounding

signaling or regulatory networks poses considerable challenges

[14]. In silico network reconstruction using machine learning

methods has been used to infer underlying molecular networks

from perturbation data with some success. Approaches suggested

include Bayesian [15] or dynamic Bayesian networks [16],

probabilistic Boolean threshold networks [17,18], conditional

correlation analysis [19], differential equation models [20] and

others. For knockdown data with high-dimensional phenotypes

acquired for example using microarrays, Nested Effects Models

(NEMs) can be used [21–25]. NEMs use the nested structure of

phenotypic effects after different knockdowns to infer a hierarchy

of genes. The underlying assumption is that if gene A is upstream

of gene B in a signaling pathway, then the effects seen after a

knockdown of A must be a superset of the effects seen after

knockdown of B. While NEMs were recently extended to handle

time-course measurements [26,27], they still have severe limita-

tions when applied to large networks, and they cannot handle

combinatorial knockdowns. This, however may be crucial to

distinguish between complex network topologies, for example with

feed-forward loops. In addition, NEMs require high-dimensional

‘‘effects’’ observations after every knockdown, which are not

routinely measured in many perturbation screens. Such pheno-

typic data furthermore offers only very indirect information about

the signaling pathway at hand. Direct observations of protein

states cannot be used with NEMs. These limitations were the

motivation for the development of Deterministic Effects Propaga-

tion Networks (DEPNs) [28]. DEPNs assume deterministic

signaling in the underlying network, and introduce noise only at

the measurement stage. The measurement distribution of active

versus inactive proteins is then estimated from the data either

using maximum likelihood inference or maximization of the

posterior distribution. Given the measurement distribution and

knockdown data, alternative network topologies can then be

scored. Dynamic DEPNs (D-DEPNs) have recently been proposed

as an extension of DEPNs that explicitly take time course data into

account [29].

Besides statistical approaches, also combinatorial optimization

methods have been suggested to tackle the problem of inferring a

signaling network from perturbation data. Ourfali et al. proposed an

integer programming approach to infer an integrated protein-protein
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and protein-DNA interaction network [30]. The authors used gene

expression measurements after knockout experiments combined with

database information to reconstruct regulatory pathways in yeast. A

similar approach has been suggested by Lan et al., linking genetic and

transcriptomic screening data with data of known molecular

interactions [31]. The drawback of both approaches is that they

need a network to start with, hence, these methods cannot be used if

no such prior information is available. Furthermore, Hashemikhabir

et al. recently showed that even when assuming that an approxi-

mately correct network is given, finding the minimum number of

topological changes to make this network consistent with given

experimental data is an NP complete problem [32]. In fact, the

exponentially increasing number of possible networks for increasing

number of genes is the most important limiting factor when inferring

network topologies. For a directed graph over n[N nodes, there are

2n(n{1) possible network topologies (forbidding cycles of length one).

Complete enumeration of the solution space thus quickly becomes

infeasible already for nw6 or 7 [17,21].

In this manuscript, we consider signal transduction as an

information flow through a network, that is perturbed by

experimental interventions. The idea is to formulate the network

inference problem as an integer linear program (ILP), where the

f{1,0,1gn2

solution vector specifies for each ordered pair of nodes

if they are linked by an inhibition, by no interaction, or by an

activation. However, ILP is an NP hard problem. We therefore

drop the integrality constraint, converting the ILP into a non-

integral linear program (LP). Edges then have continuous edge-

weights, and the decision whether or not to include an edge into

the final network requires a heuristic decision using a threshold-

based discretization. This formulation of the network inference

problem as a LP allows the use of polynomial time solvers such as

the ellipsoid method [33]. We here use the simplex algorithm as

LP solver. Albeit this algorithm is not necessarily polynomial, it has

proven itself to be very efficient in practice [34].

We have implemented this approach in the R programming

language [35]. To demonstrate its application, we evaluate our

approach on simulated data, and show that it can robustly deal

with noisy and missing data. An evaluation on large scale networks

shows an over 10 fold decrease in running time whilst

demonstrating superior performance over other current state-of-

the-art methods. Using the method on signal transduction

downstream of CD3, CD28 and LFA-1 in CD4+ T-cells, we

demonstrate the applicability to real experimental data. Last but

not least, we applied the approach to reconstruct ErbB signaling in

breast cancer cells. Our approach could successfully reconstruct

known interactions, and furthermore pointed to an important role

of feedback loops in regulating the cell cycle progression mediated

by the ErbB pathway.

Methods

Let an (unknown) graph G~(V,E) with nodes v1,:::,vn[V and

directed edges ei,j[E, i,j[ 1,:::,nf g be given. We define the edge ei,j

to go from node vi to node vj . The set of vertices V corresponds to

proteins or protein complexes, and the set of edges describes

activatory or inhibitory interactions between proteins, for example

by phosphorylation or dephosphorylation. Each protein vi[V is

associated with an activity level xi[Rz
0 , and can either be active

(xi§di) or inactive (xivdi). The parameter di[Rz is a positive,

node-specific threshold level. Finally, edges ei,j[E have weights

wi,j[R associated with them. Activating edges are characterized by

wi,jw0, inhibiting edge by wi,jv0. For notational convenience, we

write wi,j~0 if ei,j 6[E. We now make the assumption that

xi~w0
i z

X
j=i

wj,ixj , ð1Þ

hence the activity level of a protein xi is fully determined by

other proteins xj in the network with wj,i=0. Here, w0
i [Rz

0 is a

bias term that describes the baseline activity of xi in the absence of

any external regulations. We then write

vi~
1 if xi§di

0 otherwise :

�
ð2Þ

The graph G is fixed in our setting, but unknown. We can now

experimentally perturb G by forcing individual nodes vi to the

inactive state vi~xi~0, and then observe the influence this has on

all other nodes in V\vi.

Our mathematical model of signal transduction is based on the

notion of an information flow through G. The flow begins at one or

several source nodes S[V and is then propagated via the edges E
through the network until it reaches one or several sink nodes F[V.

Thus, a protein va[V influences another protein vb[V if there

exists a directed path from va to vb. If there is a direct connection

ea,b[E we say that va is the parent node of vb and vb is the child

node. According to equation (2), a knockdown of a node va implies

that its children may change their activity states. The problem we

have to solve is to infer the underlying edge weights wi,j from

observations of node activity levels after a set of such perturbation

experiments. The only constraint we impose on G is that

Vi : ei,i=[E. Cycles of length w1 are explicitly permitted.

Now let a set K of K[N different perturbation experiments be

given, where each perturbation experiment k[K consists of the

simultaneous knockdown of one or several nodes in V. Given

experimental data, we define the observation matrix

X~(xi,k)[Rn|K , where xi,k§0 is the observed activity level of

vi after perturbation experiment k. We here use continuous values

for xi,k, accounting for diverse types of experimental measure-

ments that quantify protein abundance, for example fluorescence

measured after antibody staining. We furthermore define the

activation matrix B[f0,1gn|K
as

bik~
0 if gene i has been knocked down in experiment k

1 otherwise:

�

The matrix B specifies which of the genes in the network were

targeted by which knockdown experiment. The respective genes

are fixed to the ‘‘inactive’’ state and are no longer subject to

regulation by other genes. Since we permit combinatorial

knockdowns of multiple genes simultaneously in one experiment,

B is a n|k matrix, and not simply an index vector.

Linear Programming Model
We can now formulate the network inference problem as a

linear program. Assuming that biological networks are sparse [36],

we minimize the sum of the absolute edge weights
X

i,j
Dwi,j D and

bias terms
X

i
w0

i . We furthermore introduce slack variables

jl[Rz
0 , l~1,:::,L that permit slight violations of constraints of the

LP model and can thus account for noise in the experimental data.

To minimize the extent to which slack variables are used, we

A Linear Programming Approach to Network Inference
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include the sum of the slack variables in the objective function.

The variable L describes the cardinality of the set of inactive genes

in the experimental data, L~Dfxik Dxikvdi, Vi,kgD, and corre-

sponds to the number of constraints that may be violated in the

linear program. The full LP then becomes:

min
wi,j ,w0

i
,jl

X
i,j

Dwi,j Dz
X

i

w0
i z

1

l

X
l

jl ð3Þ

subject to the constraints

V(i,k) where xi,k§di and bi,k~1 : w0
i z

X
j=i

wj,ixj,k§di ð4Þ

V(i,k) where xi,kvdi and bi,k~1 : w0
i z

X
j=i

wj,ixj,kƒ0zjl ð5Þ

The constraints (4) and (5) are defined for each pair (i,k) and

specify the effect of the knockdown k on gene i. According to

equations (1) and (2), for given knockdown k, the activity of each

gene i is determined by the activities of its parents xj,k, the strength

of their influence wj,i, and gene i’s baseline activity w0
i . Thus, if

gene i is active after perturbation k, that is, if xi,k§di, and gene i

has not been silenced in knockdown k (bi,k~1), constraint (4) has

to hold. Similarly, if the gene is inactive, we require vi~0, and

hence constraint (5) has to hold. We note that we do not need to

consider observations xi,k for the (i,k) pairs where bi,k~0, since

these correspond to perturbed genes directly targeted by the

knockdowns. The respective genes/proteins are thus no longer

influenced by incoming regulations. Furthermore, the constraints

(4) and (5) relax equation (2) in that equality is no longer required,

but instead a margin of di is enforced between activated and non-

activated node states.

Missing observations xj,k can heuristically be treated in this

framework as follows: If in constraints (4) or (5), a variable xi,k is

missing on the left hand side, the constraint is simply left out. If

one of the xj,k is missing on the right hand side, the corresponding

worst-case is assumed, i.e. in case of constraint (4), the missing

value is assumed 0, whereas in contraint (5), the missing value is

assumed to be 1.

The function of the slack variables is to allow violations of the

constraints (5), in case of contradictions between constraints (4)

and (5). The parameter l[Rz
0 is a non-negative penalty parameter

to control the introduction of slack variables jl in constraint (5).

Intuitively, if l~?, the slack variables can become infinitely large

without affecting the objective function (3); conversely, if l~0,

slack variables are not allowed. We use leave-one-out cross-

validation (LOOCV) to choose l optimally for a given data set. To

restrict the introduction of slack variables, we restrict l to be at

most L � s2(xi,k), where s2(xi,k) is the variance of the observations

xi,k for all (i,k). Thus, the higher the variance of the data the

higher the slack variables can become. The upper bound is chosen

based on the worst case where all L slack variables are unequal to

zero.

Inclusion of Prior Knowledge
In many cases, some knowledge about the biological processes

underlying a particular data set will already be given. This can be

used to formulate additional constraints, for example requiring

certain edge weights wi,j to be above or below a certain threshold if

it is known that the respective proteins do or do not interact.

Similarly, if it is known which proteins vi are receptors (source

nodes S) or sink nodes F , the following additional constraints can

be included:

Vi where i[V \S :
X
j[V

j=i

wj,i§di ð6Þ

Vi where i[V \F :
X
j[V

j=i

wi,j§di ð7Þ

The constraints force each node that is not a source or sink node

to have at least one incoming and one outgoing edge.

Data Simulation and Network Inference on Simulated
Data

To evaluate our model on simulated data, we used network

topologies that were taken from the KEGG database [37] as

ground truth. We randomly extracted sub-networks from

randomly selected KEGG signaling networks, for details see file

S1. Only gene-gene interactions in KEGG were considered. We

then simulated single knockdowns of every protein i in each of the

networks, double knockdowns of n=2 randomly chosen protein

pairs, as well as one experiment without any perturbation. Data

simulation was done using equations (1) and (2), by setting wi,j~1

for all edges ei,j[E. Nodes vi without incoming edges were assumed

to have xi,: sampled from a Normal distribution with mean 0.95

and standard deviation s, unless vi was directly targeted by the

knockdown. To then simulate measurement data from the

simulated node activities, we employed two Gaussian probability

distributions, one for active and one for inactive proteins.

Continuous observations of an activated node were simulated

from the normal distribution N (0:95,s), or from N (0:56,s) for

inactive nodes, in line with the procedure employed by Fröhlich

et al. [28]. The values of the means in the two Gaussians were

chosen to agree with average levels of activatory and inhibitory

proteins as we observed in the ErbB data set [28]. The parameter

s was chosen as described below, di was generated with a normal

distribution of N (0:755,s). We generated data with three

replicates for each type of experiment. For the network inference

with the LP model, the replicates have been summarized using the

arithmetic average.

To find the best parameter l in the range 0ƒlƒL � s2(xi,k)
and to compute a range of possible weights for each edge we used

LOOCV with a grid search. The basic idea is to leave out parts of

the observational data, infer networks on the remaining data with

different values of l, and use the resulting networks to predict

activity levels of data that were left out in network inference. This

prediction was repeated 100 times, and we calculated every time

the MSE between the predicted and observed activity levels. The

best parameter l is the one with minimal MSE. For evaluation of

resulting networks, we computed the median and the median

absolute deviations (MAD) of the edge weights learned in each

step. This is necessary, since different weights can be learned for

individual interactions in each cross-validation step. We included

only robustly learned edges in the final network, requiring that the

median of the learned edges from the different crossvalidation runs

A Linear Programming Approach to Network Inference
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was larger than the median absolute deviation (MAD) over the

runs.

We simulated data based on ten-node networks to evaluate the

performance of our approach on noisy and missing data. We

furthermore tested how the introduction of prior knowledge

improves results. Furthermore, we applied our approach on

simulated data of larger networks, to assess performance on bigger

problems and to measure how the computational time increases

with increasing network size.

Ten-Node Networks
We extracted ten different networks from KEGG with n~10

nodes each. The extracted networks have a varying number of

edges: five networks have seven interactions, the remaining

networks have five, eight, ten, twelve and thirteen interactions,

respectively. All edges were assumed positive, i.e. there are no

inhibitions in the simulated networks. To assess how our inference

approach performs on noisy data, we simulated different noise

levels in the generated data by varying s with values of 0:01, 0:05,

0:14 and 0:2. For the evaluation of our model on incomplete data,

we randomly selected 10%, 20%, 40% and 50% of the genes and

removed all the measurements given for them. Thus, 10% missing

values corresponds to one gene without any observations. We

repeated data simulation in this way 10 times for each network

and each percentage. For the simulation of missing data for the

ten-node networks, a noise level of s~0:01 was employed in the

two Gaussian distributions describing measurement noise.

Lastly, we tested how the integration of prior knowledge

improves network inference. We therefore randomly selected 10%,

25%, 50% and 100% of the true interactions, and included the

additional constraints wi,jw1 for these edges in the inference. In

addition, we separately inferred the networks assuming that the

identities of the source and sink nodes are given, but assuming no

knowledge about edges, again using s~0:01.

Larger Networks
To evaluate the performance of our LP model on larger

problems, we extracted five networks from KEGG with n~16, 26,

28, 44 and 52 nodes, respectively. As above, we simulated only

activatory interactions, with 17, 27, 31, 43 and 51 edges in the five

networks. We then simulated single knockdowns of every node,

n=2 randomly chosen double knockdowns, and one experiment

without any knockdown for each of the networks, and recon-

structed the underlying networks from the simulated data alone

using our LP approach. In contrast to inference on the ten-node

networks, we switched from LOOCV to ten-fold crossvalidation

for the estimation of l. This significantly reduces the number of

times the training process is repeated and thus the total run time.

Evaluation of Inference Results
For both, the ten-node networks and the large-scale problems,

we compared our results with those derived with the recently

published DEPN approach [28]. For each generated data set, we

inferred network topologies using the LP model and the DEPN

approach, calculated receiver operating characteristic (ROC)

[38,39] curves of the learned interactions and computed the area

under the curve for the ROC-curve (AU-ROC) and the precision-

to-recall curve (AU-PR). To assign a weight to each edge for the

DEPN approach, we used greedy hillclimbing and bootstrapping

(resampling with replacement) with 100 bootstrap samples, as

proposed in the DEPN implementation [28]. We furthermore

considered only edges appearing with a frequency higher than 0.5

for the evaluation. Since the DEPN approach cannot infer

negative interactions, we treated our LP model similarly and

ignored the signs of the edge weights.

We note here that there are two different philosophies

underlying the networks reconstructed by the DEPN approach

and by our method. In the DEPN approach, an edge va?vb

implies that vb is downstream of va in the network, and will be

affected by a knockdown of va. Therefore, DEPNs assume

transitivity: If there are edges va?vb and vb?vc, then the DEPNs

also infer an edge va?vc, since a knockdown of node va will affect

node vc indirectly via vb. DEPNs thus return equivalence classes of

networks, and not a single unique network. Our interpretation is

different: We interpret edges as direct physical interactions between

molecules, and lack of an edge means that there is no direct

interaction between the molecules. Edges are then not transitive.

This leads to a fundamental difference to the DEPNs: Provided

sufficient data are available, a unique minimal network can be

inferred from the data. We believe that, in a biological setting, one

is usually interested in inferring the actual network of physical

interactions, and not a transitively closed network of upstream-

downstream relations. We therefore in the following show the

performance evaluation based on the actually inferred networks

(i.e. we compare the single network inferred by our approach and

the transitively closed network returned by the DEPN against the

gold standard network). This comparison is biased, since a whole

equivalence class is compared against a single network for the

DEPN approach. As an alternative, we compared the DEPN

results against the transitive closure of the reference network, thus

comparing the two equivalence classes; these results are given in

figure S1 and table S1.

Network Inference on Real Data
Simulated data can be used to study the effect of different

characteristics of data on network inference performance,

however, only an evaluation on real data can provide a realistic

picture of the practical applicability of a method. To assess

performance of our approach on real world problems, we used two

different publicly available data sets: The first data set focuses on

the signal transduction downstream of CD3, CD28 and LFA-1 in

primary nave CD4z T-cells [15], the second data set considers

ErbB signaling in a breast cancer cell line [28]. We compared

performance of our approach on both data sets with random

guessing and inference using the DEPN approach, and with results

of the Bayesian approach employed by Sachs et al. in case of the

CD4z T-cell data [15].

CD4+ T-Cell Signaling after CD3, CD28 and LFA-1
Stimulation

The first data set we used regards an intracellular signaling

network in human primary nave CD4z T-cells. This data set was

published by Sachs et al. in 2005, and comprises nine perturbation

experiments (overactivations and inhibitions) with effects quanti-

fied using flow cytometry [15]. Given are measurements of the 11

phosphorylated proteins and phospholipids PKC, PKA, Akt, Raf,

Mek1/2, Erk1/2, p38, JNK, PIP2, PIP3, PLYc downstream of

CD3, CD28 and LFA-1. The perturbation conditions consist of

four stimulatory experiments and five inhibitions. Quantitative

single cell measurements are given for each of the 11 phosphor-

ylated proteins in each perturbation condition. We normalized the

fluorescence signals of the single-cell flow cytometry data against

the cell size and against overlapping wavelength ranges of the

emission signals of the fluorophores used for the 11 molecules, as

described in file S1. We then sampled from the data using

bootstrapping to get 10 bootstrap samples with three replicates

A Linear Programming Approach to Network Inference
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each from the data. The replicates where then further summarized

by taking the median. We inferred a network for each bootstrap

sample using the DEPN and LP approaches. Inference with the

LP model was carried out with parameters di set to the median of

the nine measured conditions for each molecule i. LOOCV was

used to determine l, where parameters of the two normal

distributions for active and inactive states were determined from

measurements of the activated respectively the inactivated

molecules. These distributions were then used in the cross-

validation runs to predict left-out protein states required for the

MSE computation, and optimal l were then used for final network

predictions. Edge weights from the LOOCV were summarized

across the bootstrap samples using the median. Additional details

are given in file S1. Inference using the DEPN approach was

performed using greedy hillclimbing and bootstrapping with 100

bootstrap samples for each of the sampled data sets. The median

of the inferred edge weights over the samples was used for final

evaluation.

ErbB Signaling in Breast Cancer Cells
As a second evaluation on real data, we used recently published

data on ErbB signaling in a breast cancer cell line. The ErbB

signaling pathways are some of the best studied signaling networks

and it is known that they regulate diverse physiological responses

such as cell division, motility and survival [40]. Fröhlich et al.

focused on the 16 proteins ERBB1, ERBB2, ERBB3, IGF1R, ER-

alpha, pAKT1, pERK1/2, MYC, Cyclin D1, p27, p21, Cyclin

E1, CDK6, CDK4, CDK2 and pRB1. The proteins are all

involved in the ErbB receptor-regulated G1/S cell cycle transition

network. For a detailed description of the experimental setup see

[28]. In short, the authors used RNAi knockdowns followed by

reverse phase protein arrays (RPPA) [41,42] to quantify protein

levels. They performed single-knockdowns of the thirteen proteins

ERBB1, IGF1R, ER-alpha, pAKT1, pERK1/2, MYC, Cyclin

D1, p27, p21, Cyclin E1, CDK6, CDK4, CDK2 and three

double-knockdowns of ERBB1+ERBB2, ERBB2+ERBB3 and

ERBB1+ERBB3 with chemically synthesized siRNAs as well as

one experiment with mock transfected cells as a negative control.

RPPA measurements were done before and twelve hours after

EGF stimulation for ten intermediates of the network, namely

ERBB1, ERBB2, pAKT1, pERK1/2, Cyclin D1, p27, p21,

CDK4, CDK2, pRB1, to quantify their protein expression after

each individual perturbation. This was repeated in four technical

and three biological replicates, which were normalized by the

authors using quantile normalization. The remaining proteins

could not be quantified due to lack of antibodies suitable for

RPPA.

We preprocessed this data further by summarizing replicate

measurements using the arithmetic mean. We then solved the LP

model based on the data measured 12 hours after the EGF

stimulation, using di set to the average of the mock control at time

zero for the respective protein. We used the constraints (6) with

source nodes ERBB1, ERBB2 and ERRB3, and (7) with sink node

pRB1. LOOCV was used to estimate l~1:83.

Results

We implemented the linear programs in the statistical

programming environment R version 2.12.1 [35]. The R cran

package ‘‘lpSolve’’ version 5.6.5 was used to solve the linear

programs. This package implements the simplex LP solver. The R

package ‘‘network’’ was used for graph handling. All calculations

were performed on a 3 GHz Intel dual-processor Xeon quadcore

computer with 32 GB RAM, running the Linux operating system.

No parallelization was used in the computations. Data were

simulated as described in methods and analyzed using the network

inference approach developed. We studied the effect of different

levels of noise and missing values on inference performance on

simulated data, as well as effects of overall network size. Results of

our linear programming approach were compared with DEPNs as

well as random guessing, showing superior performance of our

approach. We then applied our method to reconstruct signaling

downstream of CD3, CD28 and LFA-1 in CD4z T-cells, as well

as signal transduction in the ErbB pathway in breast cancer cells.

Analysis on Simulated Data
Simulated data allows a systematic evaluation of network

inference performance under well defined conditions. The ‘‘gold

standard’’ network used to simulate data is known, hence network

inference results can directly be evaluated. Furthermore, full

control over properties of the data can be exerted, and it is thus

possible to systematically study the influence of different levels of

noise, missing values, or network size on inference performance.

We performed network reconstruction under differing conditions

on simulated data, and evaluated results using receiver operator

characteristic (ROC) curves and precision-recall (PR) analysis. As

a single measurement of inference performance, the area under

the ROC and PR curves was used. For all analyses on simulated

data, we assumed no further prior knowledge about the underlying

network, in particular, we did not specify which of the nodes were

source or sink nodes in the network. Constraints (6) and (7) were

hence not used.

Ten-Node Networks
As a first evaluation of our approach, we reconstructed networks

from the simulated ten-node data sets, without noise or missing

values. Reconstruction was done on averages of three simulated

replicates for each of the ten networks, and the area under the

ROC and PR curves was calculated for each of the 10

reconstructions. Figures 1A and 1B show the distribution of the

AUC ROC and AUC PR values so obtained, respectively, over

the 10 simulated networks. We furthermore used the DEPN

approach on the same data, and provide its performance for

reference in the figures. Furthermore, the rightmost boxplot in the

figures shows the achieved performance for random guessing,

derived by 100 fold random permutation of edges in the true

network – thus guessing a network with the same number of edges

as the true network.

We observed superior performance of the LP approach both in

terms of the AUC ROC and AUC PR evaluation. This result is

somewhat surprising, since the method used for data simulation is

closely related to the model assumptions made by the DEPN

approach, with a deterministic signal transduction and noise

introduced only at the level of the experimental measurements.

Variability of performance is comparable across the two methods,

with interquartile ranges of approximately 0.3 for the AUC ROC

and almost 0.6 for the AUC PR. Both approaches perform

significantly better than random guessing, indicating that both

methods are able to extract information about the underlying

signal transduction networks from the knockdown data. We note

that the small values for the AUC PR are due to the fact that the

selected sub-networks are all sparse, a property they inherit from

the networks stored in the KEGG database.

We next assessed performance of our approach under

increasing levels of noise in the experimental data. This was

achieved by increasing the variability of the normal distributions

used to simulate measurements, as described in methods, using

standard deviations s of 0.01, 0.05, 0.1 and 0.2, and again
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summarizing data from three replicates and assessing performance

over ten different networks. Results are shown in figures 1C and

D, showing the distribution of achieved AUC ROC and AUC PR

values for the LP model, DEPN, and random guessing (Rnd).

Guessing is done independently of the actual data, and hence

uninfluenced by the level of noise in the data. As expected,

performance of both network inference approaches deteriorates

with increasing levels of noise, but all approaches remain superior

to guessing even for the highest level of noise simulated. We

consistently observed better performance of the LP approach,

indicating that our method can adequately handle noisy data.

As a further performance test, we evaluated the effect of missing

data on reconstruction performance. We left out up to 50% of the

data, and reconstructed networks using only the remaining values

(figures 1E, F). This resulted in a performance decrease for the LP

and the DEPN approach, however, both methods are still better

than random guessing even when 50% of the data are missing.

Furthermore, we tested the impact of prior knowledge on

network reconstruction performance. For this purpose, we either

disclosed the identity of source and sink nodes in the true

underlying network by using constraints (6) and (7), or we added

additional constraints to force 10%, 25%, 50% or 100% of the

Figure 1. Evaluation on simulated data for small-scale network reconstruction. The figure shows the area under the receiver operator
characteristic (AUC ROC) and area under the precision-recall (AUC PR) curves on simulated networks of size ten nodes. Shown are crossvalidation
results over 10 simulated data sets, with reconstruction performed using the Linear Program (LP), Deterministic Effects Propagation Networks (DEPN)
and random guessing. (A) and (B) show performance on data with low noise (s~0:01) and with no missing values, (C) and (D) illustrate performance
effects of increasing levels of noise, and (E) and (F) regard effects of missing values on inference results.
doi:10.1371/journal.pone.0069220.g001
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true edges in the gold standard network to have weight wi,j§1,

thus requiring the edge to be present in the reconstructed network.

As expected, the more prior knowledge we included in the model

the better are the resulting predictions, compare figure S2.

To evaluate the performance of our approach on networks

having inhibitory interactions, we randomly selected half of the

edges of each of the ten-node networks to be deactivating. We

simulated data for these networks similarly to the networks having

only positive interactions with s~0:01. We then applied our

inference approach on the data and assessed the performance by

computing AUC ROC and AUC PR values (figure S3). In spite of

the additional complexity of the three class problem (activation,

inhibition or no edge), overall performance is only marginally

affected.

Larger Problems and Runtime Analysis
We next assessed performance of our network inference

approach on larger networks with 16 to 52 nodes. Data were

simulated as described in methods, and network inference was

carried out using 10-fold crossvalidation. To summarize results,

crossvalidation runs were aggregated by using the median of the

crossvalidation runs for each individual edge weight. We

compared results with the DEPN approach and with random

guessing. Figure 2 shows a comparison of the resulting AUC values

from the receiver operator characteristic (2A) and precision-recall

analysis (2B). On these larger networks, AUC-ROC values

between 0.6 and 0.7 and AUC-PR values around 0.4 were

achieved consistently for all network sizes tested using the linear

programming approach, whereas the DEPNs were only margin-

ally better than random guessing.

To assess runtime performance of the network inference, we

measured the average required time to infer the underlying

network for our LP model and the DEPN approach. Figure 3

shows the measured running times for the two approaches on

networks of increasing size; note the logarithmic scale of the Y-

axis. The LP model requires on average 7:12+4:47 (mean +
standard deviation) minutes for the ten-node data sets with 16

simulated knockdowns. This is a significant speedup over the

DEPN approach on the same network, which requires

24:37+10:01 minutes and even yields inferior reconstruction

results (Figure 2). For networks of size n~44 and n~52,

crossvalidation computations with the DEPN approach took over

1000 hours, and were then interrupted. The crossvalidation runs

for the corresponding linear program could still be finished within

85 hours, giving an at least 12 fold decreased runtime.

Evaluation on Flow Cytometry Data
An evaluation on simulated data has the advantage that data

properties and simulation conditions can be tightly controlled and

a gold standard network for performance evaluation is available.

However, only an assessment on real data can ultimately proof

practical applicability of an approach in a biological setting. We

therefore evaluated network inference performance of our

approach on published flow cytometry data, studying 11

phosphorylated proteins and phospholipids downstream of CD3,

CD28 and LFA-1 activation in human primary nave CD4z T

cells. We compared results obtained using our approach with the

network as published by Sachs et al. as a reference network [15].

Notably, the Bayesian network approach by Sachs et al. exploits

individual cell measurements from flow cytometry data, which

were summarized to average values for the inference with DEPN

and LP model. The amount of data exploited for the inference is

Figure 2. Impact of network size. Effect of network size on network reconstruction – AUC values of the ROC (A) and the PR (B) curves of the
network inference using the LP model, the DEPNs and random guessing, for different network sizes. Results were obtained using stratified 10-fold
crossvalidation. Calculation with DEPN did not finish within 1000 hours of computation time for networks of size w30, and computations were thus
interrupted.
doi:10.1371/journal.pone.0069220.g002

Figure 3. Running time. The figure shows the computation time
required to infer networks of different sizes, for the LP (red solid circles
and line) and DEPN (green dashed circles and line) approaches, in
seconds. Note the logarithmic scale of the y-axis. Computation time is
for full evaluation of stratified 10-fold crossvalidation. Computations for
networks for 44 and 52 nodes with DEPN were aborted after 1000 hours
(green star) without a solution.
doi:10.1371/journal.pone.0069220.g003
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thus substantially smaller for the latter two approaches. We then

calculated true positive edges (TP), false positive edges (FP), true

negative edges (TN) and false negative edges (FN) and used these

values to compute sensitivity, specificity, precision and accuracy of

the network reconstruction. Table 1 summarizes the results for the

LP model, DEPN, the Bayesian approach pursued by Sachs et al.,

and random guessing. P-values were obtained based on the

empirical distribution for guessing. The Bayesian network

approach pursued by Sachs et al. achieved superior results for

all of the above measures, with an achieved specificity of 95%

(pv0.00001), sensitivity of 71% (pv0.00001), precision of 71%

(pv0.00001) and accuracy of 92% (pv0.00001). This is likely due

to the substantially larger amount of data available from using

individual cell measurements, which had to be summarized for the

DEPN and LP models. Performance of both the LP model and the

DEPN approach was inferior to the Bayesian network, with

specificity 91% (pv0.00001), sensitivity 18% (p = 0.47), precision

25% (p = 0.1) and accuracy 81% (p = 0.02) for the LP model, and

specificity 93% (pv0.00001), sensitivity 12% (p = 0.72), precision

22% (p = 0.32) and accuracy 82% (p = 0.01) for the DEPN

approach.

Hence, with comparable accuracy, the LP approach achieved

higher sensitivity and precision than the DEPN, at the expense of

inferior specificity. Notably, if we score only correctly predicted

interactions between two proteins, not taking directionality of the

interaction into account and consider direct edges that arise from

indirect regulations (through intermediate proteins) as correctly

scored, the LP model achieves a specificity of 98% (pv0.00001),

sensitivity of 53% (pv0.00001), precision of 82% (pv0.00001)

and accuracy of 92% (pv0.00001), achieving higher specificity

and higher precision also than the Bayesian network. Table 1

furthermore reports results for random guessing, which were

obtained using 100-fold random permutation of edges in the

reference network.

Reconstruction with our LP approach on the full data set led to

the reconstructed network shown in figure 4 (table S2 reports the

edge weights). Blue and red edges are true and false positives,

respectively, dashed lines correspond to false negative edges and

green lines are edges where a link between the two proteins exists,

but the directionality of the interaction was predicted incorrectly.

Regarding the inferred edges more closely, we observed that the

edges from PIP2 to Erk and from PIP3 to Erk inferred with the LP

model are given as indirect connections via PKC?Mek and via

PIP2 ?PKC?Mek in the reference network. Furthermore, the

learned activation of PKC by PKA has already been predicted

(albeit in reversed direction) by Sachs et al.

ErbB Signaling is controlled by Negative and Positive
Feedback Loops

We next applied our approach to publicly available reverse

phase protein array measurements obtained after knockdowns and

pathway activation in the ErbB pathway [28]. For a description of

data and inference procedure, see methods. The inferred network

using the LP approach consists of 43 interactions (34 activations

and 9 inhibitions). Figure 5 shows a heatmap of the reconstructed

edge weights, where the wi,j are color coded: pink corresponds to

no interaction (zero edge weight), blue to an activation, and yellow

to an inhibition. Detailed median edge weights with error bars

(median absolute deviation, MAD) are given in table S3. For

further analysis, we removed all interactions with coefficient of

variation larger than one, thus removing edges with high

uncertainty. This procedure resulted in a network with a total of

35 interactions (31 activations, 4 inhibitions), which we analyzed

further.

Concerning inhibitory interactions, our inference predicts a

strong inhibition of CDK2 by p21, with edge weight {1:07. This

is a known inhibition that has previously been reported [43].

Furthermore, we inferred deactivations of pERK1/2 by pRB1 and

CDK2 by Cyclin D1, with edge weights {0:6 and {0:36,

respectively. Both inhibitions seem biologically plausible feedback

loops to control the G1/S cell cycle transition, but have not

previously been reported. However, there is some evidence

showing co-precipitation of CDK2 and Cyclin D1 [44]. Last but

not least, we predict an inactivation of p21 by ERBB1 with

strength wi,j~{0:2. This inhibition can be found in the literature

as an indirect path via pAKT1 and MYC [28]. Comparing these

results with the DEPN approach run on the same data, we firstly

have to emphasize that DEPNs cannot infer negative edge weights,

and therefore are not able to directly learn any inhibitory

influences. Nevertheless, all of the interactions mentioned above

with the exception of the pRB1 ? pERK1/2 inhibition have been

inferred using the DEPN approach as unsigned interactions.

Regarding activations, the strongest inferred activation of our

LP approach is the activation of pERK1/2 by p21, with

wi,j~1:62. This result suggests the presence of a strong positive

feedback loop controlling the G1/S cell cycle transition. Interest-

ingly, albeit no direct activation of ERKs by p21 has been reported

previously, it is known that p21 strongly increases the phosphor-

ylation of cFos and MBP by ERK1 and ERK2 [45], thus

constituting a feedback on regulatory effects mediated by ERK.

We furthermore predict an activation of CDK2 by ERBB2 with

weight wi,j~1:0. Although the direct connection of these proteins

has not been reported in the literature, there exist two indirect

signaling paths: ERBB2 ? pAkt1 ? MYC ? Cyclin E1 ?
CDK2 and ERBB2 ? pERK1/2 ? MYC ? Cyclin E1 ?
CDK2, which support our results [28]. Our approach furthermore

predicts five interactions with edge weights of &0:95 each: MYC

activates CDK6, IGF1R activates Cyclin E1 and vice versa,

CDK6 activates ERalpha and ERalpha activates MYC. The last

activation is known from literature [46]. The connection between

IGF1R and Cyclin E1 is known by an indirect path via pERK1/2

Table 1. Evaluation results on T-Cell signaling.

LP model
LP model
REP DEPN Sachs et al. random

TP 3 9 2 12 2.72

TN 95 102 97 99 91.72

FP 9 2 7 5 13.28

FN 14 8 15 5 13.28

SP 0.91** 0.98** 0.93** 0.95** 0.86

SN 0.18 0.53** 0.12 0.71** 0.16

PR 0.25 0.82** 0.22 0.71** 0.16

AC 0.81* 0.92** 0.82* 0.92** 0.76

The table shows performance measures for the network inference on flow
cytometry data regarding signaling downstream of CD3, CD28 and LFA-1 in
CD4z T-cells. Network inference was performed using the linear program (LP),
Deterministic Effects Propagation Networks (DEPN), random guessing, and a
Bayesian network model as implemented by Sachs et al. TP = true positives,
TN = true negatives, FP = false positives, SP = specificity, SN = sensitivity,
PR = precision, AC = accuracy. The column ‘‘LP model REP’’ corresponds to the
evaluation results of the LP model where the reversely inferred edges and
reported indirect regulations are counted as true positives. Statistically
significant differences are marked with ��(pv0:0001) and �(pv0:05),
respectively.
doi:10.1371/journal.pone.0069220.t001
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Figure 4. Signaling in CD4z T-cells. LP network inference results of the flow cytometry data. The blue lines correspond to true positive edges
given in the reference network from Sachs et al. Green edges have been predicted in the wrong direction (reversed edges) and red edges are false
positives. Dashed lines are missed interactions.
doi:10.1371/journal.pone.0069220.g004

Figure 5. Reconstructed edge weights in ErbB signaling. Imageplot of median of inferred edge weights wi,j of the ErbB signaling data. Shown
are average results from the crossvalidation runs. Parameter i refers to columns and j to rows, hence there is for example a strong inhibition of CDK2
by p21.
doi:10.1371/journal.pone.0069220.g005
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and MYC [28]. The two other interactions between MYC and

CDK6, and between CDK6 and ERalpha are newly predicted

activations. Using the DEPNs on the same data, an indirect path

was learned from MYC to CDK6: MYC ? p27 ? CDK4 ?
Cyclin D1 ? CDK6 [28]. Among the remaining learned

activations with lower edge weights, the activations of ERBB1

by ERBB2 and vice versa are worth mentioning, since the two

kinases are known to form heterodimers [40,47].

To evaluate these results further, we used the String database

(http://string-db.org) as reference network [48]. We use all

interactions of the 16 proteins with a combined confidence score

higher than 0.92. Since the interactions given in String are

undirected and unsigned, we removed the edge weights of our

inferred network topology as well as the signs. We then computed

sensitivity, specificity, precision and accuracy for the inferred

networks. In addition, we compared results against 1000 randomly

generated networks, which were derived by randomly permuting

the edges in the String reference network. Last but not least, we

compared our results with results of the DEPN approach on the

same data, as previously published [28]. We note that an analysis

on the transitive closure of the reference network is not possible,

since string does not contain any directionality information.

Table 2 shows the complete results obtained. Both LP and DEPN

achieved a specificity of 83% (pv0.00001), while the LP model

achieved higher sensitivity (21%, pv0.00001) than DEPN (14%,

pv0.00001). In terms of accuracy and precision, LP outperformed

DEPN (accuracy: 63%, p = 0.13 LP vs. 60%, p = 0.22 DEPN;

precision: 38%, p = 0.44 LP vs. 28%, p = 0.1 DEPN).

In conclusion, we learned several already known activations and

inactivations and inferred potential new interactions. The most

interesting new predictions are probably those which indicate

negative or positive feedback loops, since they allow it to regulate

and control the G1/S cell cycle transition. Chen et al. showed that

the ERBB response is silenced by negative feedback from active

ERK [47], supporting the idea of feedback loops in ERBB

signaling.

Discussion and Conclusions

With the availability of large-scale experimental datasets and

easy and relatively inexpensive access to perturbation experiments,

functional screens offer a direct means to elucidate cellular

signaling in living cells. However, the reconstruction of signal

transduction networks from perturbation data is a challenging

problem that, in spite of increased attention in the last decade, still

is in desperate need for novel algorithms. The problem has been

shown to be NP complete even if a core topology is known, and

only minimal changes to make a model consistent with experi-

mental data are sought for [32]. Various statistical and machine

learning approaches have been developed to reconstruct networks

from observational data, and several address network inference

from perturbation experiments. Main challenges in the field come

from the complexity of the inference problem, with an exponen-

tially growing number of possible network topologies for increasing

network size. Methods such as Nested Effects Models or

Deterministic Effects Propagation Networks then quickly reach

computational limits when larger networks are targeted.

Our main contribution in this manuscript is the formulation of

the network inference problem in terms of an information flow

through a graph. While the well known max-flow/min-cut

problem in graph theory searches for a maximum flow through

a given network, our problem here is inverse in the sense that we

know values of the flow through the network for different cuts

(knockdowns), and wish to reconstruct the underlying network

topology from this data. Using maximum parsimony as a guiding

principle, we show how this leads to a formulation of the problem

as a linear program, a class of optimization problems that has

received considerable attention in combinatorial optimization.

Integer linear programming is NP hard, but by making the

assumption that the edge weights wi,j are continuous, we can

formulate the network inference problem as a non-integral LP,

thus making the problem solvable in polynomial time. Using a

heuristic, threshold-based discretization of edge weights, we then

arrive at an approximately optimal network topology. This trick

allows it to solve substantially larger network inference problems,

and present limitations in network inference then no longer arise

from the computational complexity, but rather limited availability

of perturbation data with sufficient observations of gene/protein

activity levels after all knockdowns.

Data requirements for such network inference are still limiting

the application of such approaches as ours on large-scale screens.

For a screen with n genes, we ideally would need single

knockdowns of all n genes, each with subsequent measurements

of the activity levels of all n affected proteins. While large-scale

screens are widely available, the second requirement – observa-

tions of activity levels of all proteins after each knockdown – is still

rare and not routinely measured. Microarrays have been used to

measure transcriptional activity after gene knockdown, but offer

only a very indirect view about changes at the protein level [49].

To complicate matters further, cellular networks are often robustly

designed [50], and single knockdowns may not be sufficient to

affect cellular phenotypes in such situations due to redundancies in

the cellular pathways. This can be overcome by combinatorial

screens with double or multiple knockdowns, which can easily be

integrated into our LP formulation in a canonical way, but further

increase data requirements [51].

Albeit the approach we pursue here is using a deterministic

model of signal transduction and pathway activity, we show that it

can deal extremely well with noisy, stochastic data. The

introduction of slack variables in the formulation of the

optimization problem here is key to cope with experimental and

Table 2. Evaluation results on ErbB signaling.

LP model DEPN random

TP 9 6 14.72

TN 71 71 58.72

FP 15 15 27.28

FN 33 36 27.28

SP 0.83** 0.83** 0.68

SN 0.21** 0.14** 0.35

PR 0.38 0.28 0.35

AC 0.63 0.60 0.57

Shown are comparative performance measurements for network inference on
reverse phase protein array data regarding ErbB signaling in breast cancer cells.
Network inference was performed using our linear programming (LP) approach,
Deterministic Effects Propagation Networks (DEPN), and random guessing of a
network. Results were compared with a gold standard network from the String
database. TP = true positives, TN = true negatives, FP = false positives,
SP = specificity, SN = sensitivity, PR = precision, AC = accuracy. Statistically
significant differences are marked with ��(pv0:0001) and �(pv0:05),
respectively.
doi:10.1371/journal.pone.0069220.t002

A Linear Programming Approach to Network Inference

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e69220



biological variability, and permits solution of the model even in the

presence of conflicting data. The principle of maximum parsimo-

ny, i.e. minimization of the overall sum of edge weights, further

helps to drive solutions to sparse networks, and makes the

inference feasible even in the presence of substantial amounts of

missing data. The formulation of the objective function as we use

it, with minimization of the sum of absolute edge weights instead

of the sum of squared weights, leads to solutions of the LP where

wi,j~0 for as many tuples (i,j) as possible, and hence sparse

networks. This is known as Lasso regularization, and is a direct

analogue of using a zero-mean Laplace prior in Bayesian network

inference, as can immediately be seen by taking the negative

logarithm of the Laplace prior. Correspondingly, the parameter l
in equation (3) has an intimate relation to the dispersion parameter

of the Laplace distribution, and hence relates the expected

variance of the weight parameters w to the variance of the slack

variables j. This parameter effectively trades off variability in the

experimental data and thus the slack variables to variability in the

model parameters wi,j . This implies that the value of l should be

chosen not only based on network size, but also taking into

account the overall variance of the experimental measurements.

A critical issue in setting up the linear program is the choice of

threshold parameters di for discretization of gene activity levels.

This parameter determines, for each gene i separately, from which

level of activation xi,k a gene or protein vi is considered active or

inactive. Based on this discretization, either constraint (4) or (5) are

used. Correspondingly, the choice of d may critically affect results

of the whole inference procedure. Optimally, d should be

determined experimentally from control experiments directly

knocking down each gene vi and comparing its activity with a

negative control. Alternatively, statistical approaches using signif-

icance levels for false positive calls could be used to define a

threshold after z-score normalization of the data, for example

using the full screen as a quasi negative control [52]. A simple

approach that we used in this manuscript was to calculate di from

the data, for example as the mean of the xi,: for all experimental

measurements of a given gene vi.

The simulation study we performed illustrates stable perfor-

mance of our approach both in light of noisy and missing data,

with superior performance over the DEPN approach at least on

the noisy data we simulated. On the two real experimental data

sets, the LP approach shows higher sensitivity and precision, at the

expense of decreased specificity in comparison to the DEPN

approach. Since network inference predictions should be consid-

ered as hypotheses only and not ultimate reality, and clearly need

further experimental validation to firmly establish interactions

between involved proteins, it may be an advantage to rather have

a higher rate of false positive predictions than too many false

negatives.

Importantly, there are fundamentally different assumptions

made in the underlying network models of the DEPN and LP

approaches. To illustrate the difference, assume a simple network

with three nodes A, B, C, and edges A?B, B?C, and A?C to

be given. Furthermore, assume that a knockdown of node B is

made. DEPNs now assume that the effect of the knockdown of

node B can be observed at node C, since C is downstream of B. In

terms of ‘‘activation’’ of a signaling molecule, this means that

DEPNs assume that node C will only become activated, if all of its

parents are activated, hence incoming edges are connected with

AND in the activation function. In the given example, node C is

not activated, due to the knockdown of B. In our model, in the

same situation, we assume that node C will be activated after

knockdown of B, due to the direct edge A?C. Incoming edges to

a node are thus aggregated using the OR function. Interestingly,

these differences in assumptions make it possible for the LP

approach to infer whether or not an edge A?C exists, whereas it

is impossible to make any statement about this edge using the

DEPN model, since under this model, there is no difference in the

observed state of node C, no matter whether the edge A?C exists

or not. It is possible to change these underlying assumptions and

implement DEPNs with an ‘‘OR’’ activation function; however,

the LP model becomes a nonlinear model if ‘‘AND’’ interactions

are assumed.

Our results not only show how the choice of method to be used

depends on the research question at hand, e.g. hypothesis

generation versus prediction of high confidence interactions, but

also on the type and structure of the underlying data: DEPNs are

suitable for small-scale networks with large amounts of available

data, but rapidly deteriorate with increasing levels of noise.

Furthermore, the two models assume different underlying

mechanisms of signal transduction and effect propagation. The

scenario where the LP approach can play its strengths are larger

network inference problems with up to several dozens of genes,

possibly involving missing values and higher levels of noise in the

data, and ideally comprising single and combinatorial knock-

downs. Both approaches require direct readouts of states of the

proteins involved in the signaling network, for example from

protein arrays. If only indirect observations at the transcriptomic

level e.g. through microarrays or RNA sequencing technology are

available, or if cellular phenotypes are observed e.g. from

microscopy based screening approaches, Nested Effects Models

are the method of choice in case of high-dimensional downstream

readouts [21–25], or Probabilistic Boolean Threshold Networks in

case of low-dimensional observations [17]. Neither DEPN in their

original form nor our LP approach can directly handle time series

data, which would help to reconstruct in particular feedback cycles

in signaling networks. D-DEPNs are an extension of DEPNs that

are specifically designed for time series experiments [29]. D-

DEPNS work particularly well if long time series measurements

are available for small networks. Importantly, for small time

courses of large networks as tested in this manuscript, D-DEPNs

are not applicable and could not be used. An obvious extension of

the current LP approach therefore is to explicitly take time series

measurements into account and exploit the information conveyed

by the temporal evolution of a network to refine network

reconstruction.

An interesting observation is the very good performance of the

Bayesian network used by Sachs et al. on the flow cytometry study

[15]. Importantly, the authors use pairwise correlations of the

single-cell data to predict dependencies and causal interactions.

This additional information coming from hundreds of individual

cell measurements cannot be exploited by the DEPN and LP

approaches, for which the relative amounts of correlated

measurements need to be transformed into an observation matrix

which reflects the effects of each perturbation at the average level

per knockdown. Thereby, the single-cell information are lost.

Integrating such single cell data into combinatorial optimization

approaches to network inference is an open issue for future work.

Supporting Information

Figure S1 Evaluation on simulated data against transi-
tively closed reference network. The figures show the area

under the receiver operator characteristic (AUC ROC) and area

under the precision-recall (AUC PR) curves on simulated ten-node

and large-scale networks. Shown are the results for the

Deterministic Effects Propagation Networks (DEPN) and random

guessing of the transitively closed reference networks. (A) and (B)
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show performance on data with increasing levels of noise, and (C)

and (D) illustrate performance effects of increasing levels of missing

data for the ten-node networks. (E) and (F) show the AUC values

for the large-scale networks.

(TIF)

Figure S2 Prior knowledge. The figure shows the AUC

values of (A) ROC and (B) PR curves of the network inference

using the LP model and random guessing on data simulated for

the ten-node networks randomly selected from KEGG. The x-axis

labeling denotes the percentage of interactions which are defined

to be known a priori in the LP model. The LP-SF model is the

model with known source and sink nodes.

(TIF)

Figure S3 Evaluation with inhibitory edges. The figure

shows the evaluation results of a two class ROC analysis

considering only activating edges and a three class ROC analysis

considering activating and inhibitory edges, as described [20]. The

two class results correspond to the A ROC and B PR curves of the

network inference using the LP model and random guessing on

data simulated for the ten-node networks randomly selected from

KEGG. For the three class evaluation we randomly set half of the

edges given in each of the ten-node networks to be inhibitory. We

inferred the underlying networks and computed the AUC values

as described. The results are shown for the (A) ROC and (B) PR

curves for the three class evaluation on the two boxplots of the

right side of each figure. Note that in the three class analysis,

random guessing has an AUC ROC value different from 0.5, and

a PR value smaller than in the two class case. The dashed

horizontal lines show the expected values for random guessing.

(TIF)

Table S1 Evaluation of the DEPNs with transitively
closed reference network. The table shows performance

measures for the network inference on the flow cytometry data

regarding signaling downstream of CD3, CD28 and LFA-1 in

CD4+ T-cells. Network inference was performed using the

Deterministic Effects Propagation Networks (DEPN) and random

guessing of the transitively closed reference network (reported in

Sachs et al.). TP = true positives, TN = true negatives, FP =

false positives, SP = specificity, SN = sensitivity, PR = precision,

AC = accuracy. Statistically significant differences are marked

with **(pv0:0001) and *(pv0:05), respectively.

(PDF)

Table S2 Inferred edge weights flow cytometry data.
Table S2 shows the average edge weights across the inferred

network topologies using the LP model and the bootstrapping

approach on the flow cytometry data.

(PDF)

Table S3 Inferred edge weights ERBB data. Table S3

shows the median edge weights 6 the median absolute deviation

(MAD) of all LOOCV-steps for the inferred network topologies,

using the LP model on the ErbB signaling data. If the MAD is not

given explicitly, it is equal to zero.

(PDF)

Supplementary File S1 Methods and implementation
details. This pdf-file provides additional information on how

the ten-node and large-scale networks have been extracted from

KEGG, and it gives details on the preprocessing of the flow

cytometry data.

(PDF)
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