PuSH - Publikationsserver des Helmholtz Zentrums München

Bayesian inference of latent causes in gene regulatory dynamics.
In: Proceedings (10th international conference on Latent Variable Analysis and Signal Separation). Berlin [u.a.]: Springer, 2012. 520-527 (Lecture Notes Comp. Sci. ; 7191)
In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches.
Weitere Metriken?
Icb_biostatistics Icb_Latent Causes Icb_ML
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Sammelbandbeitrag/Konferenzbeitrag
Schlagwörter Independent component analysis; Bayesian inference; latent causes
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
ISBN 978-3-642-28550-9
Konferenztitel 10th international conference on Latent Variable Analysis and Signal Separation
Konferenzband Proceedings
Zeitschrift Lecture Notes in Computer Science
Quellenangaben Band: 7191, Heft: , Seiten: 520-527 Artikelnummer: , Supplement: ,
Reihe Lecture Notes in Computer Science
Verlag Springer
Verlagsort Berlin [u.a.]
Begutachtungsstatus nicht peer-reviewed