PuSH - Publication Server of Helmholtz Zentrum München

Bayesian inference of latent causes in gene regulatory dynamics.

In: Proceedings (10th international conference on Latent Variable Analysis and Signal Separation). Berlin [u.a.]: Springer, 2012. 520-527 (Lect. Notes Comput. Sc. ; 7191)
DOI Order publishers version
Open Access Green as soon as Postprint is submitted to ZB.
In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches.
Additional Metrics?
Icb_biostatistics Icb_Latent Causes Icb_ML
Edit extra informations Login
Publication type Article: Conference contribution
Keywords Independent component analysis; Bayesian inference; latent causes
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
ISBN 978-3-642-28550-9
Conference Title 10th international conference on Latent Variable Analysis and Signal Separation
Proceedings Title Proceedings
Quellenangaben Volume: 7191, Issue: , Pages: 520-527 Article Number: , Supplement: ,
Series Lecture Notes in Computer Science
Publisher Springer
Publishing Place Berlin [u.a.]