PuSH - Publikationsserver des Helmholtz Zentrums München

Envelopment of the hepatitis B virus nucleocapsid.

Virus Res. 106, 199-209 (2004)
Verlagsversion bestellen
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The hepatitis B virus (HBV) is an enveloped DNA virus with an icosahedral capsid replicating via reverse transcription. The crystal structure of the capsid is known. It has a diameter of 36 nm and is formed by one protein species (C protein). The viral envelope contains three different coterminal proteins (S, M, and L proteins) spanning the membrane several times. These proteins are not only released from infected cells as components of the viral envelope but in 10,000-fold excess as subviral lipoprotein particles with a diameter of 22 nm containing no capsid. Assembly of the capsid occurs in the cytosol and results in packaging of a 3.5 kb RNA molecule together with viral and cellular factors. This newly formed capsid cannot be enveloped. Rather, synthesis of the viral DNA genome in the lumen of the capsid by reverse transcription is required to induce a budding competent state. Envelopment then takes place at an intracellular membrane of the pre-Golgi compartment. The S and the L protein, but not the M protein, is required for this process. The L protein forms two different transmembrane topologies. The isoform exposing the N-terminal part at the cytosolic side of the membrane is essential for budding. In this domain, a 22 amino acid (aa) long linear stretch has been mapped genetically to play a vital role in the morphogenetic process. This domain probably mediates the contact to the capsid. A second matrix domain was mapped to the cytosolic loop of the S protein. A similar genetic approach identified two small areas on the capsid surface, which might interact with the envelope proteins during envelopment.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 0168-1702
e-ISSN 1872-7492
Zeitschrift Virus Research
Quellenangaben Band: 106, Heft: 2, Seiten: 199-209 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed