PuSH - Publikationsserver des Helmholtz Zentrums München

Forster, B.* ; Massopust, P.

Statistical encounters with complex B-splines.

Constr. Approx. 29, 325-344 (2009)
DOI Verlagsversion bestellen
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Complex B-splines as introduced in Forster et al. (Appl. Comput. Harmon. Anal. 20: 281-282, 2006) are an extension of Schoenberg's cardinal splines to include complex orders. We exhibit relationships between these complex B-splines and the complex analogues of the classical difference and divided difference operators and prove a generalization of the Hermite-Genocchi formula. This generalized Hermite-Genocchi formula then gives rise to a more general class of complex B-splines that allows for some interesting stochastic interpretations.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Complex B-splines; Divided differences; Weyl fractional derivative and integral; Hermite-Genocchi formula; Dirichlet mean; Submartingale; Poisson-Dirichlet process; GEM distribution
ISSN (print) / ISBN 0176-4276
e-ISSN 1432-0940
Quellenangaben Band: 29, Heft: 3, Seiten: 325-344 Artikelnummer: , Supplement: ,
Verlag Springer
Begutachtungsstatus Peer reviewed