PuSH - Publikationsserver des Helmholtz Zentrums München

Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation.

Plant Physiol. 152, 1514-1528 (2010)
DOI Verlagsversion bestellen
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enzyme of the photorespiratory C(2) cycle in C3 plants. GDC activity was inhibited by S-nitrosoglutathione due to S-nitrosylation/S-glutathionylation of several cysteine residues. Gas-exchange measurements demonstrated that the bacterial elicitor harpin, a strong inducer of reactive oxygen species and NO, inhibits GDC activity. Furthermore, an inhibitor of GDC, aminoacetonitrile, was able to mimic mitochondrial depolarization, hydrogen peroxide production, and cell death in response to stress or harpin treatment of cultured Arabidopsis cells. These findings indicate that the mitochondrial photorespiratory system is involved in the regulation of NO signal transduction in Arabidopsis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Programmed cell-death; Mitchondrial alternative oxidase; Pea leaf mitochondria; Arabidopsis suspension cells; Hydrogen-peroxide production; Nitric-oxide; reactive oxygen; Complex-I; Permeability transition; Cytochrome-C
ISSN (print) / ISBN 0032-0889
e-ISSN 1532-2548
Zeitschrift Plant Physiology
Quellenangaben Band: 152, Heft: 3, Seiten: 1514-1528 Artikelnummer: , Supplement: ,
Verlag American Society of Plant Biologists (ASPB)
Begutachtungsstatus Peer reviewed