PuSH - Publication Server of Helmholtz Zentrum München

Loedige, I.* ; Stotz, M.* ; Qamar, S.* ; Kramer, K.* ; Hennig, J. ; Schubert, T.* ; Loeffler, P.* ; Längst, G.* ; Merkl, R.* ; Urlaub, H.* ; Meister, G.*

The NHL domain of BRAT is an RNA-binding domain that directly contacts the hunchback mRNA for regulation.

Genes Dev. 28, 749-764 (2014)
Open Access Green as soon as Postprint is submitted to ZB.
The Drosophila protein brain tumor (Brat) forms a complex with Pumilio (Pum) and Nanos (Nos) to repress hunchback (hb) mRNA translation at the posterior pole during early embryonic development. It is currently thought that complex formation is initiated by Pum, which directly binds the hb mRNA and subsequently recruits Nos and Brat. Here we report that, in addition to Pum, Brat also directly interacts with the hb mRNA. We identify Brat-binding sites distinct from the Pum consensus motif and show that RNA binding and translational repression by Brat do not require Pum, suggesting so far unrecognized Pum-independent Brat functions. Using various biochemical and biophysical methods, we also demonstrate that the NHL (NCL-1, HT2A, and LIN-41) domain of Brat, a domain previously believed to mediate protein-protein interactions, is a novel, sequence-specific ssRNA-binding domain. The Brat-NHL domain folds into a six-bladed beta propeller, and we identify its positively charged top surface as the RNA-binding site. Brat belongs to the functional diverse TRIM (tripartite motif)-NHL protein family. Using structural homology modeling, we predict that the NHL domains of all TRIM-NHL proteins have the potential to bind RNA, indicating that Brat is part of a conserved family of RNA-binding proteins.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Brat ; Rna Binding ; Trim-nhl ; Gene Regulation ; Hunchback ; Translational Repression; Drosophila Embryos; Stem-cells; Self-renewal; Microscale Thermophoresis; Beta-propeller; Protein; Pumilio; Tumor; Expression; Nanos
ISSN (print) / ISBN 0890-9369
e-ISSN 1549-5477
Quellenangaben Volume: 28, Issue: 7, Pages: 749-764 Article Number: , Supplement: ,
Publisher Cold Spring Harbor Laboratory Press
Publishing Place Cold Spring Harbor
Reviewing status Peer reviewed