PuSH - Publikationsserver des Helmholtz Zentrums München

FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum.

PLoS ONE 9:e101124 (2014)
Verlagsversion Volltext DOI
Open Access Gold
Creative Commons Lizenzvertrag
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fibroblast Growth-factors; Sonic-hedgehog; Binding-protein; Purkinje-cells; Neuronal Progenitors; Granule Neurons; Multiple Roles; Rat Cerebellum; Nervous-system; Fgf Receptor-1
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 9, Heft: 7, Seiten: , Artikelnummer: e101124 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed