PuSH - Publikationsserver des Helmholtz Zentrums München

Pauly, O. ; Diotte, B.* ; Fallavollita, P.* ; Weidert, S.* ; Euler, E.* ; Navab, N.*

Machine learning-based augmented reality for improved surgical scene understanding.

Comput. Med. Imaging Graph. 41, 55-60 (2014)
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In orthopedic and trauma surgery, AR technology can support surgeons in the challenging task of understanding the spatial relationships between the anatomy, the implants and their tools. In this context, we propose a novel augmented visualization of the surgical scene that mixes intelligently the different sources of information provided by a mobile C-arm combined with a Kinect RGB-Depth sensor. Therefore, we introduce a learning-based paradigm that aims at (1) identifying the relevant objects or anatomy in both Kinect and X-ray data, and (2) creating an object-specific pixel-wise alpha map that permits relevance-based fusion of the video and the X-ray images within one single view. In 12 simulated surgeries, we show very promising results aiming at providing for surgeons a better surgical scene understanding as well as an improved depth perception.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 0895-6111
e-ISSN 1879-0771
Quellenangaben Band: 41, Heft: , Seiten: 55-60 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Kidlington
Begutachtungsstatus Peer reviewed