PuSH - Publication Server of Helmholtz Zentrum München

Buddrus-Schiemann, K.* ; Rieger, M. ; Mühlbauer, M.* ; Barbarossa, M.V.* ; Kuttler, C. ; Hense, B.A. ; Rothballer, M. ; Uhl, J.* ; Fonseca, J.R.* ; Schmitt-Kopplin, P. ; Schmid, M. ; Hartmann, A.

Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models.

Anal. Bioanal. Chem. 406, 6373-6383 (2014)
Open Access Green as soon as Postprint is submitted to ZB.
In this interdisciplinary approach, the dynamics of production and degradation of the quorum sensing signal 3-oxo-decanoylhomoserine lactone were studied for continuous cultures of Pseudomonas putida IsoF. The signal concentrations were quantified over time by use of monoclonal antibodies and ELISA. The results were verified by use of ultra-high-performance liquid chromatography. By use of a mathematical model we derived quantitative values for non-induced and induced signal production rate per cell. It is worthy of note that we found rather constant values for different rates of dilution in the chemostat, and the values seemed close to those reported for batch cultures. Thus, the quorum-sensing system in P. putida IsoF is remarkably stable under different environmental conditions. In all chemostat experiments, the signal concentration decreased strongly after a peak, because emerging lactonase activity led to a lower concentration under steady-state conditions. This lactonase activity probably is quorum sensing-regulated. The potential ecological implication of such unique regulation is discussed.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Pseudomonas Putida Isof ; Continuous Culture ; N-acylhomoserine Lactones ; Mathematical Modelling ; Elisa ; Quorum Sensing; Performance Liquid-chromatography; Acyl Homoserine Lactones; Quorum-sensing System; Bacillus-subtilis; Biofilm Formation; Public-goods; Aeruginosa; Communication; Bacteria; Identification
ISSN (print) / ISBN 1618-2642
e-ISSN 1618-2650
Quellenangaben Volume: 406, Issue: 25, Pages: 6373-6383 Article Number: , Supplement: ,
Publisher Springer
Publishing Place Heidelberg
Reviewing status Peer reviewed