PuSH - Publikationsserver des Helmholtz Zentrums München

Second order subspace analysis and simple decompositions.

In: Proceedings (Latent variable analysis and signal separation : 9th international conference, 27-30 September 2010, St. Malo, France). Berlin: Springer, 2010. 370-377 ( ; 6365)
The recovery of the mixture of an N-dimensional signal generated by N independent processes is a well studied problem (see e.g. [1,10]) and robust algorithms that solve this problem by Joint Diagonalization exist. While there is a lot of empirical evidence suggesting that these algorithms are also capable of solving the case where the source signals have block structure (apart from a final permutation recovery step), this claim could not be shown yet - even more, it previously was not known if this model separable at all. We present a precise definition of the subspace model, introducing the notion of simple components, show that the decomposition into simple components is unique and present an algorithm handling the decomposition task.
Altmetric
Weitere Metriken?
Tags
Icb_ML
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Sammelbandbeitrag/Konferenzbeitrag
Schlagwörter Statistical machine learning; Signal processing
ISBN 364215994X
Konferenztitel Latent variable analysis and signal separation : 9th international conference
Konferzenzdatum 27-30 September 2010
Konferenzort St. Malo, France
Konferenzband Proceedings
Quellenangaben Band: 6365, Heft: , Seiten: 370-377 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin
Begutachtungsstatus