PuSH - Publikationsserver des Helmholtz Zentrums München

Demaret, L. ; Iske, A.*

Optimal N-term approximation by linear splines over anisotropic Delaunay triangulations.

Math. Comput. 84, 1241-1264 (2015)
Verlagsversion DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Anisotropic triangulations provide efficient geometrical methods for sparse representations of bivariate functions from discrete data, in particular from image data. In previous work, we have proposed a locally adaptive method for efficient image approximation, called adaptive thinning, which relies on linear splines over anisotropic Delaunay triangulations. In this paper, we prove asymptotically optimal -term approximation rates for linear splines over anisotropic Delaunay triangulations, where our analysis applies to relevant classes of target functions: (a) piecewise linear horizon functions across -Hölder smooth boundaries, (b) functions of regularity, where , (c) piecewise regular horizon functions of regularity, where .
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Image Compression; Contourlet Transform; Wavelets; Representation
ISSN (print) / ISBN 0025-5718
e-ISSN 1088-6842
Quellenangaben Band: 84, Heft: 293, Seiten: 1241-1264 Artikelnummer: , Supplement: ,
Verlag American Mathematical Society (AMS)
Begutachtungsstatus