PuSH - Publikationsserver des Helmholtz Zentrums München

Kohler, D.* ; Marzouk, Y.M.* ; Müller, J. ; Wever, U.*

A new network approach to Bayesian inference in partial differential equations.

Int. J. Numer. Methods Eng. 104, 313-329 (2015)
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We introduce a novel numerical approach to parameter estimation in partial differential equations in a Bayesian inference context. The main idea is to translate the equation into a state-discrete dynamic Bayesian network with the discretization of cellular probabilistic automata. There exists a vast pool of inference algorithms in the probabilistic graphical models field, which can be applied to the network.In particular, we reformulate the parameter estimation as a filtering problem, discuss requirements for according tools in our specific setup, and choose the Boyen-Koller algorithm. To demonstrate our ideas, the scheme is applied to the problem of arsenate advection and adsorption in a water pipe: from measurements of the concentration of dissolved arsenate at the outflow boundary condition, we infer the strength of an arsenate source at the inflow boundary condition.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Boyen-koller Algorithm ; Cellular Probabilistic Automata ; Dynamic Bayesian Networks ; Hyperbolic ; Inverse ; Partial Differential Equations ; Probabilistic Methods
ISSN (print) / ISBN 0029-5981
e-ISSN 1097-0207
Quellenangaben Band: 104, Heft: 5, Seiten: 313-329 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort Chichester [u.a.]
Begutachtungsstatus Peer reviewed