PuSH - Publikationsserver des Helmholtz Zentrums München

Approximate bayesian computation for stochastic single-cell time-lapse data using multivariate test statistics.

Lect. Notes Comput. Sc. 9308, 52-63 (2015)
DOI Verlagsversion bestellen
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Stochastic dynamics of individual cells are mostly modeled with continuous time Markov chains (CTMCs). The parameters of CTMCs can be inferred using likelihood-based and likelihood-free methods. In this paper, we introduce a likelihood-free approximate Bayesian computation (ABC) approach for single-cell time-lapse data. This method uses multivariate statistics on the distribution of single-cell trajectories. We evaluated our method for samples of a bivariate normal distribution as well as for artificial equilibrium and non-equilibrium single-cell time-series of a one-stage model of gene expression. In addition, we assessed our method for parameter variability and for the case of tree-structured time-series data. A comparison with an existing method using univariate statistics revealed an improved parameter identifiability using multivariate test statistics.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Approximate Bayesian Computation ; Multivariate Test Statistics ; Parameter Estimation ; Single-cell Time-series
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel Computational Methods in Systems Biology : 13th International Conference, CMSB 2015
Konferzenzdatum 16-18 September 2015
Konferenzort Nantes, France
Quellenangaben Band: 9308, Heft: , Seiten: 52-63 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]