PuSH - Publikationsserver des Helmholtz Zentrums München

Zhou, L.* ; Georgii, E. ; Plant, C.* ; Böhm, C.*

Covariate-related structure extraction from paired data.

Lect. Notes Comput. Sc. 9832, 151-162 (2016)
Postprint DOI
Open Access Green
In the biological domain, it is more and more common to apply several high-throughput technologies to the same set of samples. We propose a Covariate-Related Structure Extraction approach (CRSE) that explores relationships between different types of high-dimensional molecular data (views) in the context of sample covariate information from the experimental design, for example class membership. Real-world data analysis with an initial pipeline implementation of CRSE shows that the proposed approach successfully captures cross-view structures underlying multiple biologically relevant classification schemes, allowing to predict class labels to unseen examples from either view or across views.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Quellenangaben Band: 9832, Heft: , Seiten: 151-162 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]