PuSH - Publication Server of Helmholtz Zentrum München

Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia.

Cancer Cell 30, 849-862 (2016)
Publishers Version Research data DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
as soon as is submitted to ZB.
Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Acute Lymphoblastic Leukemia ; Cancer Stem Cells ; Dormant Tumor Cells ; Minimal Residual Disease (mrd) ; Patient-derived Xenograft (pdx) Cells ; Primary Patients' All Mrd Cells ; Rna Single-cell Sequencing ; Treatment Resistance; Minimal Residual Disease; Hematopoietic Stem-cells; Initiating Cells; Propagating Cells; Myeloid-leukemia; Drug Discovery; B-precursor; Cancer; Gene; Xenografts
Reviewing status