PuSH - Publikationsserver des Helmholtz Zentrums München

Parallelization and high-performance computing enables automated statistical inference of multi-scale models.
Cell Syst. 4, 194–206.e9 (2017)
Mechanistic understanding of multi-scale biological processes, such as cell proliferation in a changing biological tissue, is readily facilitated by computational models. While tools exist to construct and simulate multi-scale models, the statistical inference of the unknown model parameters remains an open problem. Here, we present and benchmark a parallel approximate Bayesian computation sequential Monte Carlo (pABC SMC) algorithm, tailored for high-performance computing clusters. pABC SMC is fully automated and returns reliable parameter estimates and confidence intervals. By running the pABC SMC algorithm for ∼106 hr, we parameterize multi-scale models that accurately describe quantitative growth curves and histological data obtained in vivo from individual tumor spheroid growth in media droplets. The models capture the hybrid deterministic-stochastic behaviors of 105-106 of cells growing in a 3D dynamically changing nutrient environment. The pABC SMC algorithm reliably converges to a consistent set of parameters. Our study demonstrates a proof of principle for robust, data-driven modeling of multi-scale biological systems and the feasibility of multi-scale model parameterization through statistical inference. A new parallel approximate Bayesian computation sequential Monte Carlo (pABC SMC) algorithm allows for robust, data-driven modeling of multi-scale biological systems and demonstrates the feasibility of multi-scale model parameterization through statistical inference.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Approximate Bayesian Computation ; Bayesian Parameter Estimation ; High-performance Computing ; Model-based Data Integration ; Multi-scale Modeling ; Statistical Inference ; Tumor Spheroids; Approximate Bayesian Computation; Stochastic Simulation; Dynamical-systems; Monte-carlo; Cell; Predicts; Heterogeneity; Architecture; Environment; Integration
ISSN (print) / ISBN 2405-4712
e-ISSN 2405-4720
Zeitschrift Cell Systems
Quellenangaben Band: 4, Heft: 2, Seiten: 194–206.e9 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Maryland Heights, MO
Begutachtungsstatus nicht peer-reviewed