PuSH - Publikationsserver des Helmholtz Zentrums München

Öster, C.* ; Kosol, S.* ; Hartlmüller, C. ; Lamley, J.M.* ; Iuga, D.* ; Oss, A.* ; Org, M.L.* ; Vanatalu, K.* ; Samoson, A.* ; Madl, T. ; Lewandowski, J.R.*

Characterization of protein-protein interfaces in large complexes by solid-state NMR solvent paramagnetic relaxation enhancements.

J. Am. Chem. Soc. 139, 12165-12174 (2017)
Verlagsversion Forschungsdaten DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Solid-state NMR is becoming a viable alternative for obtaining information about structures and dynamics of large biomolecular complexes, including ones that are not accessible to other high-resolution biophysical techniques. In this context, methods for probing protein-protein interfaces at atomic resolution are highly desirable. Solvent paramagnetic relaxation enhancements (sPREs) proved to be a powerful method for probing protein-protein interfaces in large complexes in solution but have not been employed toward this goal in the solid state. We demonstrate that 1 H and 15 N relaxation-based sPREs provide a powerful tool for characterizing intermolecular interactions in large assemblies in the solid state. We present approaches for measuring sPREs in practically the entire range of magic angle spinning frequencies used for biomolecular studies and discuss their benefits and limitations. We validate the approach on crystalline GB1, with our experimental results in good agreement with theoretical predictions. Finally, we use sPREs to characterize protein-protein interfaces in the GB1 complex with immunoglobulin G (IgG). Our results suggest the potential existence of an additional binding site and provide new insights into GB1:IgG complex structure that amend and revise the current model available from studies with IgG fragments. We demonstrate sPREs as a practical, widely applicable, robust, and very sensitive technique for determining intermolecular interaction interfaces in large biomolecular complexes in the solid state.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Spin-lattice-relaxation; Immunoglobulin-binding Domain; Range Structural Restraints; Backbone Dynamics; Sensitivity Enhancement; Crystalline Protein; Residual Dipolar; Fab Fragment; Spectroscopy; Resolution
ISSN (print) / ISBN 0002-7863
e-ISSN 1520-5126
Quellenangaben Band: 139, Heft: 35, Seiten: 12165-12174 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Verlagsort Washington
Begutachtungsstatus Peer reviewed