PuSH - Publication Server of Helmholtz Zentrum München

netReg: Network-regularized linear models for biological association studies.

Bioinformatics 34, 896-898 (2017)
Publishers Version DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
as soon as is submitted to ZB.
Modelling biological associations or dependencies using linear regression is often complicated when the analyzed data-sets are high-dimensional and less observations than variables are availableling this issue. Recently proposed regression models utilize prior knowledge on dependencies, e.g. in the form of graphs, arguing that this information will lead to more reliable estimates for regression coefficients. However, none of the proposed models for multivariate genomic response variables have been implemented as a computationally efficient, freely available library. In this paper we propose netReg, a package for graph-penalized regression models that use large networks and thousands of variables. netReg incorporates a priori generated biological graph information into linear models yielding sparse or smooth solutions for regression coefficients. netReg is implemented as both R-package and C ++ commandline tool. The main computations are done in C ++, where we use Armadillo for fast matrix calculations and Dlib for optimization. The R package is freely available on https://bioconductor.org/packages/netReg. The command line tool can be installed using the conda channel Bioconda. Installation details, issue reports, development versions, documentation and tutorials for the R and C ++ versions and the R package vignette can be found on GitHub ext-link-type="https://dirmeier.github.io/netReg/. The GitHub page also contains code for benchmarking and example datasets used in this paper.
Additional Metrics?
Icb_biostatistics icb_rene
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Variable Selection; Genomic Data; Regression; Expression; Lasso
Reviewing status