PuSH - Publication Server of Helmholtz Zentrum München

Differential equations models to study quorum sensing.

Methods Mol. Biol. 1673, 253-271 (2018)
Postprint DOI
Open Access Green
Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Derivatives ; Differential Equations ; Mathematical Models ; Ordinary Differential Equations ; Partial Differential Equations ; Quorum Sensing
ISSN (print) / ISBN 1064-3745
e-ISSN 1940-6029
Quellenangaben Volume: 1673, Issue: , Pages: 253-271 Article Number: , Supplement: ,
Publisher Springer
Publishing Place Berlin [u.a.]
Reviewing status Peer reviewed