PuSH - Publication Server of Helmholtz Zentrum München

Shahbazi, M.N.* ; Scialdone, A. ; Skorupska, N.* ; Weberling, A.* ; Recher, G.* ; Zhu, M.* ; Jedrusik, A.* ; Devito, L.G.* ; Noli, L.* ; Macaulay, I.C.* ; Buecker, C.* ; Khalaf, Y.* ; Ilic, D.* ; Voet, T.* ; Marioni, J.C.* ; Zernicka-Goetz, M.*

Pluripotent state transitions coordinate morphogenesis in mouse and human embryos.

Nature 552, 239-243 (2017)
Publ. Version/Full Text DOI
Open Access Green as soon as Postprint is submitted to ZB.
The foundations of mammalian development lie in a cluster of embryonic epiblast stem cells. In response to extracellular matrix signalling, these cells undergo epithelialization and create an apical surface in contact with a cavity, a fundamental event for all subsequent development. Concomitantly, epiblast cells transit through distinct pluripotent states, before lineage commitment at gastrulation. These pluripotent states have been characterized at the molecular level, but their biological importance remains unclear. Here we show that exit from an unrestricted naive pluripotent state is required for epiblast epithelialization and generation of the pro-amniotic cavity in mouse embryos. Embryonic stem cells locked in the naive state are able to initiate polarization but fail to undergo lumenogenesis. Mechanistically, exit from naive pluripotency activates an Oct4-governed transcriptional program that results in expression of glycosylated sialomucin proteins and the vesicle tethering and fusion events of lumenogenesis. Similarly, exit of epiblasts from naive pluripotency in cultured human post-implantation embryos triggers amniotic cavity formation and developmental progression. Our results add tissue-level architecture as a new criterion for the characterization of different pluripotent states, and show the relevance of transitions between these states during development of the mammalian embryo.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Stem-cell Transition; Lumen Formation; Naive Pluripotency; Ground-state; Primed Pluripotency; Epithelial-cells; Self-renewal; Rna-seq; Culture; Polarization
ISSN (print) / ISBN 0028-0836
e-ISSN 1476-4687
Journal Nature
Quellenangaben Volume: 552, Issue: 7684, Pages: 239-243 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed