PuSH - Publication Server of Helmholtz Zentrum München

SCANPY: Large-scale single-cell gene expression data analysis.

Genome Biol. 19:15 (2018)
Publ. Version/Full Text DOI
Open Access Gold
Creative Commons Lizenzvertrag
SCANPY is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with SCANPY, we present ANNDATA, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Single-cell Transcriptomics ; Machine Learning ; Scalability ; Graph Analysis ; Clustering ; Pseudotemporal Ordering ; Trajectory Inference ; Differential Expression Testing ; Visualization ; Bioinformatics; Rna-sequencing Data; Diffusion Maps; Heterogeneity; Reconstruction; Visualization; Trajectories
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 19, Issue: 1, Pages: , Article Number: 15 Supplement: ,
Publisher BioMed Central
Publishing Place London
Reviewing status Peer reviewed