PuSH - Publikationsserver des Helmholtz Zentrums München

Haghverdi, L. ; Lun, A.T.L.* ; Morgan, M.D.* ; Marioni, J.C.*

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.

Nat. Biotechnol. 36, 421-427 (2018)
Verlagsversion Postprint DOI
Open Access Green
Large-scale single-cell RNA sequencing (scRNA-seq) data sets that are produced in different laboratories and at different times contain batch effects that may compromise the integration and interpretation of the data. Existing scRNA-seq analysis methods incorrectly assume that the composition of cell populations is either known or identical across batches. We present a strategy for batch correction based on the detection of mutual nearest neighbors (MNNs) in the high-dimensional expression space. Our approach does not rely on predefined or equal population compositions across batches; instead, it requires only that a subset of the population be shared between batches. We demonstrate the superiority of our approach compared with existing methods by using both simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect-correction method can be scaled to large numbers of cells.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 0733-222X
e-ISSN 1546-1696
Zeitschrift Nature Biotechnology
Quellenangaben Band: 36, Heft: 5, Seiten: 421-427 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus