PuSH - Publication Server of Helmholtz Zentrum München

Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism.

Sci. Rep. 8:11330 (2018)
Publishers Version Research data DOI
Open Access Gold
Creative Commons Lizenzvertrag
as soon as is submitted to ZB.
The human uptake transporter NaCT is important for human brain development, brain function and energy metabolism and mediates the uptake of citrate and other intermediates of the tricarboxylic acid cycle from blood into neurons and hepatocytes. Mutations in the SLC13A5 gene encoding NaCT are associated with epileptic encephalopathy. To gain more insights into the transport mechanisms we analyzed the functional consequences of mutations in the SLC13A5 gene on NaCT-mediated transport function. Using HEK293 cells expressing wild-type and eight mutated NaCT proteins, we investigated the mRNA and protein amount as well as the protein localization of all NaCT variants. Furthermore, the impact on NaCT-mediated citrate uptake was measured. In addition, a structural model of the transport pore was generated to rationalize the consequences of the mutations on a structural basis. We demonstrated that all proteins were synthesized with an identical molecular weight as the wild-type transporter but several mutations (NaCTp.G219R, -p.G219E, -p.T227M, -p.L420P and -p.L488P) lead to a complete loss of NaCT-mediated citrate transport. This loss of transport activity can be explained on the basis of the developed structural model. This model may help in the further elucidation of the transport mechanism of this important uptake transporter.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Coupled Citrate Transporter; Long-lived Indy; Slc13 Family; Life-span; Dicarboxylate; Substrate
Reviewing status
Institute(s) Institute for Pancreatic Beta Cell Research (IPI)