PuSH - Publikationsserver des Helmholtz Zentrums München

Akagi, G. ; Schimperna, G.* ; Segatti, A.* ; Spinolo, L.*

Quantitative estimates on localized finite differences for the fractional poisson problem, and applications to regularity and spectral stability.

Commun. Math. Sci. 16, 913-961 (2018)
DOI Verlagsversion bestellen
Free by publisher: Verlagsversion online verfügbar 11/2022
We establish new quantitative estimates for localized finite differences of solutions to the Poisson problem for the fractional Laplace operator with homogeneous Dirichlet conditions of solid type settled in bounded domains satisfying the Lipschitz cone regularity condition. We then apply these estimates to obtain (i) regularity results for solutions of fractional Poisson problems in Besov spaces; (ii) quantitative stability estimates for solutions of fractional Poisson problems with respect to domain perturbations; (iii) quantitative stability estimates for eigenvalues and eigenfunctions of fractional Laplace operators with respect to domain perturbations.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Porous-medium Equations; Mu-transmission; Laplacian; Operators; Domains; Dirichlet; Sobolev; Spaces
ISSN (print) / ISBN 1539-6746
e-ISSN 1539-6746
Quellenangaben Band: 16, Heft: 4, Seiten: 913-961 Artikelnummer: , Supplement: ,
Verlag International Press
Verlagsort Somerville, Mass.
Begutachtungsstatus