PuSH - Publikationsserver des Helmholtz Zentrums München

Sosnin, S.* ; Vashurina, M. ; Withnall, M.D. ; Karpov, P. ; Fedorov, M.* ; Tetko, I.V.

A survey of multi-task learning methods in chemoinformatics.

Mol. Inform. 37:1800108 (2018)
Verlagsversion Postprint DOI
Open Access Green
Despite the increasing volume of available data, the proportion of experimentally measured data remains small compared to the virtual chemical space of possible chemical structures. Therefore, there is a strong interest in simultaneously predicting different ADMET and biological properties of molecules, which are frequently strongly correlated with one another. Such joint data analyses can increase the accuracy of models by exploiting their common representation and identifying common features between individual properties. In this work we review the recent developments in multi-learning approaches as well as cover the freely available tools and packages that can be used to perform such studies.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Multi-task Learning ; Transfer Learning ; Neural Networks; Toxicity Prediction; Neural-networks; Regression; Model; Gtm
ISSN (print) / ISBN 1868-1743
e-ISSN 1868-1751
Zeitschrift Molecular Informatics
Quellenangaben Band: 37, Heft: 4, Seiten: , Artikelnummer: 1800108 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed