PuSH - Publication Server of Helmholtz Zentrum München

Van Bergen, N.J.* ; Guo, Y.* ; Rankin, J.* ; Paczia, N.* ; Becker-Kettern, J.* ; Kremer, L.S. ; Pyle, A.* ; Conrotte, J.F.* ; Ellaway, C.* ; Procopis, P.* ; Prelog, K.* ; Homfray, T.* ; Baptista, J.* ; Baple, E.* ; Wakeling, M.* ; Massey, S.* ; Kay, D.P.* ; Shukla, A.* ; Girisha, K.M.* ; Lewis, L.E.S.* ; Santra, S.* ; Power, R.* ; Daubeney, P.* ; Montoya, J.* ; Ruiz-Pesini, E.* ; Kovács-Nagy, R.* ; Pritsch, M.* ; Ahting, U.* ; Thorburn, D.R.* ; Prokisch, H. ; Taylor, R.W.* ; Christodoulou, J.* ; Linster, C.L.* ; Ellard, S.* ; Hakonarson, H.*

NAD(P)HX dehydratase (NAXD) deficiency: A novel neurodegenerative disorder exacerbated by febrile illnesses.

Brain 142, 50-58 (2019)
Publ. Version/Full Text Research data DOI
Open Access Green as soon as Postprint is submitted to ZB.
The nicotinamide nucleotide repair system comprises two enzymes: NAXD and NAXE. Van Bergen et al. identify the first pathogenic variants in NAXD in infants who suffered febrile illness-associated neurodegeneration and cardiac failure. NAXD deficiency leads to accumulation of damaged metabolites (NAD(H)X), resulting in mitochondrial dysfunction and death in early childhood.Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in V-max and increase in K-M for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Metabolite Repair ; Mitochondria ; Febrile Illness ; Dehydratase ; Epimerase; Repair System; Nadh; Yeast
ISSN (print) / ISBN 0006-8950
e-ISSN 1460-2156
Quellenangaben Volume: 142, Issue: 1, Pages: 50-58 Article Number: , Supplement: ,
Publisher Oxford University Press
Publishing Place Great Clarendon St, Oxford Ox2 6dp, England
Reviewing status Peer reviewed