PuSH - Publication Server of Helmholtz Zentrum München

Lee, H.* ; Yeom, Y.S.* ; Nguyen, T.T.* ; Choi, C.* ; Han, H.* ; Shin, B.* ; Zhang, X.* ; Kim, C.H.* ; Chung, B.S.* ; Zankl, M.

Percentile-specific computational phantoms constructed from ICRP mesh-type reference computational phantoms (MRCPs).

Phys. Med. Biol. 64:045005 (2019)
Postprint DOI
Open Access Green
Recently, the Task Group 103 of the International Commission on Radiological Protection (ICRP) has developed new mesh-type reference computational phantoms (MRCPs) for adult male and female. When compared to the current voxel-type reference computational phantoms in ICRP Publication 110, the MRCPs have several advantages, including deformability which makes it possible to create phantoms in different body sizes or postures. In the present study, the MRCPs were deformed to produce a set of percentile-specific phantoms representing the 10th, 50th and 90th percentiles of standing height and body weight in Caucasian population. For this, anthropometric parameters for the percentile-specific phantoms were first derived from the anthropometric software and survey data. Then, the MRCPs were modified to match the derived anthropometric parameters. For this, first, the MRCPs were scaled in the axial direction to match the head height, torso length, and leg length. Then, the head, torso, and legs were scaled in the transversal directions to match the lean body mass for the percentile-specific phantoms. Finally, the scaled phantoms were manually adjusted to match the body weight and the remaining anthropometric parameters (upper arm, waist, buttock, thigh, and calf circumferences and sagittal abdominal diameter). The constructed percentile-specific phantoms and the MRCPs were implemented into the Geant4 Monte Carlo code to calculate organ doses for a cesium-137 contaminated floor. The results showed that organ doses of the 50th percentile (both standing height and body weight) phantoms are very dose to those of the MRCPs. There were noticeable differences in organ doses, however, for the 10th and 90th percentile phantoms when compared with those of the MRCPs. The results of the present study confirm the general intuition that a small person receives higher doses than a large person when exposed to a static radiation field, and organs closer to the source receive higher doses.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Mesh Type Reference Computational Phantom ; Non Reference Phantom ; Percentile Specific Phantom ; Body Size ; Monte Carlo; Physical Dosimetric Reconstruction; Adult Human Phantoms; Lean Body-mass; Radiological Accident; Virtual Calibration; Distributions; Simulation; Prediction; Weight; Height
ISSN (print) / ISBN 0031-9155
e-ISSN 1361-6560
Quellenangaben Volume: 64, Issue: 4, Pages: , Article Number: 045005 Supplement: ,
Publisher Institute of Physics Publishing (IOP)
Publishing Place Bristol
Reviewing status Peer reviewed