PuSH - Publikationsserver des Helmholtz Zentrums München

Gonzales García, I. ; Milbank, E.* ; Diéguez, C.* ; López, M.* ; Contreras, C.*

Glucagon, GLP-1 and thermogenesis.

Int. J. Mol. Sci. 20:3445 (2019)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
Brown adipose tissue (BAT) thermogenesis is a conserved mechanism to maintain body temperature in mammals. However, since BAT contribution to energy expenditure can represent a relevant modulator of metabolic homeostasis, many studies have focused on the nervous system and endocrine factors that control the activity of this tissue. There is long-established evidence that the counter-regulatory hormone glucagon negatively influences energy balance, enhances satiety, and increases energy expenditure. Despite compelling evidence showing that glucagon has direct action on BAT thermogenesis, recent findings are questioning this conventional attribute of glucagon action. Glucagon like peptide-1 (GLP-1) is an incretin secreted by the intestinal tract which strongly decreases feeding, and, furthermore, improves metabolic parameters associated with obesity and diabetes. Therefore, GLP-1 receptors (GLP-1-R) have emerged as a promising target in the treatment of metabolic disorders. In this short review, we will summarize the latest evidence in this regard, as well as the current therapeutic glucagon- and GLP-1-based approaches to treating obesity.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Glucagon ; Glp1 ; Thermogenesis ; Brown Adipose Tissue ; Browning ; Hypothalamic Control Of Energy Balance; Brown Adipose-tissue; Dependent Insulinotropic Polypeptide; Spontaneous Meal Size; Invariant Nkt Cells; Killer T-cells; Food-intake; Peptide-1 Receptor; Hypothalamic Ampk; Thyroid-hormones; Gene-expression
ISSN (print) / ISBN 1422-0067
e-ISSN 1661-6596
Quellenangaben Band: 20, Heft: 14, Seiten: , Artikelnummer: 3445 Supplement: ,
Verlag MDPI
Verlagsort Basel