PuSH - Publikationsserver des Helmholtz Zentrums München

Polynomial Interpolation on the Unit Sphere II.

Adv. Comput. Math. 26, 155-171 (2007)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The problem of interpolation at $(n+1)^2$ points on the unit sphere $mathbbS^2$ by spherical polynomials of degree at most $n$ is proved to have a unique solution for several sets of points. The points are located on a number of circles on the sphere with even number of points on each circle. The proof is based on a method of factorization of polynomials.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter interpolation; pherical polynomials; nit sphere
ISSN (print) / ISBN 1019-7168
e-ISSN 1572-9044
Quellenangaben Band: 26, Heft: , Seiten: 155-171 Artikelnummer: , Supplement: ,
Verlag Springer
Begutachtungsstatus Peer reviewed