PuSH - Publikationsserver des Helmholtz Zentrums München

Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study.

Radiat. Environ. Biophys. 59, 63-78 (2020)
Verlagsversion Postprint DOI
Open Access Green
Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response adjusted for dose fractionation. This cohort includes 63,707 tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s-1950s and were followed-up for death from non-cancer causes during 1950-1987. In the current analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically motivated nonlinear dose-response models to get a better understanding of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially linear dose-response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses (> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Ionizing Radiation ; Ischemic Heart Diseases ; Lnt Model ; Multi-model Inference ; Nonlinear Dose-response; Atomic-bomb Survivors; Inflammatory Plaque Phenotype; Dose Ionizing-radiation; Circulatory Diseases; Apoe(-/-) Mice; Ulcerative Dermatitis; Cancer Mortality; Solid Cancer; Life-span; Exposure
ISSN (print) / ISBN 0301-634X
e-ISSN 1432-2099
Quellenangaben Band: 59, Heft: 1, Seiten: 63-78 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort 233 Spring St, New York, Ny 10013 Usa
Begutachtungsstatus Peer reviewed