PuSH - Publication Server of Helmholtz Zentrum München

Nono Nankam, P.A.* ; Blüher, M. ; Kehr, S.* ; Klöting, N. ; Krohn, K.* ; Adams, K.* ; Stadler, P.F.* ; Mendham, A.E.* ; Goedecke, J.H.*

Distinct abdominal and gluteal adipose tissue transcriptome signatures are altered by exercise training in African women with obesity.

Sci. Rep. 10:10240 (2020)
Publ. Version/Full Text Research data DOI
Open Access Gold
Creative Commons Lizenzvertrag
The differential associations of adipose depots with metabolic risk during obesity have been proposed to be controlled by environmental and genetic factors. We evaluated the regional differences in transcriptome signatures between abdominal (aSAT) and gluteal subcutaneous adipose tissue (gSAT) in obese black South African women and tested the hypothesis that 12-week exercise training alters gene expression patterns in a depot-specific manner. Twelve young women performed 12-weeks of supervised aerobic and resistance training. Pre- and post-intervention measurements included peak oxygen consumption (VO2peak), whole-body composition and unbiased gene expression analysis of SAT depots. VO2peak increased, body weight decreased, and body fat distribution improved with exercise training (p<0.05). The expression of 15 genes, mainly associated with embryonic development, differed between SAT depots at baseline, whereas 318 genes were differentially expressed post-training (p<0.05). Four developmental genes were differentially expressed between these depots at both time points (HOXA5, DMRT2, DMRT3 and CSN1S1). Exercise training induced changes in the expression of genes associated with immune and inflammatory responses, and lipid metabolism in gSAT, and muscle-associated processes in aSAT. This study showed differences in developmental processes regulating SAT distribution and expandability of distinct depots, and depot-specific adaptation to exercise training in black South African women with obesity.
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Weight-loss; Fat Distribution; Gene-expression; Inflammation; Macrophage; Liver
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Quellenangaben Volume: 10, Issue: 1, Pages: , Article Number: 10240 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)