PuSH - Publikationsserver des Helmholtz Zentrums München

Storath, M.* ; Weinmann, A.

Wavelet sparse regularization for manifold-valued data.

Multiscale Model. Simul. 18, 674-706 (2020)
Postprint DOI
Open Access Green
n this paper, we consider the sparse regularization of manifold-valued data with respect to an interpolatory wavelet/multiscale transform. We propose and study variational models for this task and provide results on their well-posedness. We present algorithms for a numerical realization of these models in the manifold setup. Further, we provide experimental results to show the potential of the proposed schemes for applications.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Denoising ; Interpolatory Multiscale Transforms ; Interpolatory Wavelets ; Manifold-valued Data ; Sparse Regularization ; Symmetric Spaces; Proximal Point Algorithm; Extrinsic Sample Means; Center-of-mass; Subdivision Schemes; Riemannian-manifolds; Refinement Equations; Variational-problems; Bounded Variation; General Dilation; Corpus-callosum
ISSN (print) / ISBN 1540-3459
e-ISSN 1540-3467
Quellenangaben Band: 18, Heft: 2, Seiten: 674-706 Artikelnummer: , Supplement: ,
Verlag Siam Publications
Verlagsort Philadelphia
Begutachtungsstatus Peer reviewed