PuSH - Publikationsserver des Helmholtz Zentrums München

Erben, A.* ; Hörning, M.* ; Hartmann, B.* ; Becke, T.* ; Eisler, S.A.* ; Southan, A.* ; Cranz, S. ; Hayden, O.* ; Kneidinger, N. ; Königshoff, M. ; Lindner, M. ; Tovar, G.E.M.* ; Burgstaller, G. ; Clausen-Schaumann, H.* ; Sudhop, S.* ; Heymann, M.*

Precision 3D-printed cell scaffolds mimicking native tissue composition and mechanics.

Adv. Healthc. Mater. 9:2000918 (2020)
Verlagsversion DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Cellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell-ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell-ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two-photon stereolithography is adopted to print up to mm-sized high-precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein-based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two-pass printing or post-print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7-300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D-lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single-cell and tissue dynamics in response to defined mechanical and bio-molecular cues and is ultimately scalable to full organs.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biofabrication ; Cellular Orientation Guidance ; High Precision 3d Bio-printing ; Tissue Engineering ; Two-photon Stereolithography; Multiphoton Microscopy; Gelatin Methacryloyl; Differentiation; Fabrication; Rigidity; Microstructures; Micropatterns; Generation; Symmetry; Growth
ISSN (print) / ISBN 2192-2640
e-ISSN 2192-2659
Quellenangaben Band: 9, Heft: 24, Seiten: , Artikelnummer: 2000918 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
Förderungen University of Stuttgart within the "Leistungszentrum Mass Personalization"
Ministry of Science, Research and Arts of Baden-Wurttemberg
Bavarian Research Focus "Herstellung und biophysikalische Charakterisierung von dreidimensionalen Geweben (CANTER)"
Bavarian State Ministry of Science and the Arts as part of the Bavarian Research Institute for Digital Transformation (bidt)