PuSH - Publikationsserver des Helmholtz Zentrums München

Fischer, C.A, ; Besora-Casals, L.* ; Rolland, S.G.* ; Haeussler, S.* ; Singh, K.* ; Duchen, M.* ; Conradt, B.* ; Marr, C.

MitoSegNet: Easy-to-use deep learning segmentation for analyzing mitochondrial morphology.

iScience 23:101601 (2020)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Artificial Intelligence ; Automation In Bioinformatics ; Bioinformatics ; Cell Biology; Image; Atp13a2; Parkinsonism; Mutations; Dynamics
ISSN (print) / ISBN 2589-0042
e-ISSN 2589-0042
Zeitschrift iScience
Quellenangaben Band: 23, Heft: 10, Seiten: , Artikelnummer: 101601 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Begutachtungsstatus Peer reviewed
Förderungen NIH HHS