PuSH - Publikationsserver des Helmholtz Zentrums München

Ragweed plants grown under elevated CO2 levels produce pollen which elicit stronger allergic lung inflammation.

Allergy 76, 1718-1730 (2021)
Verlagsversion Postprint DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Background Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated.Methods Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2-pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2-RWE were investigated using ELISA and untargeted metabolomics.Results In vivo, CO2-RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1 beta, and IL-6). In contrast, supernatants from CO2-RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2-RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs.Conclusion Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Allergic Lung Inflammation ; Carbon Dioxide ; Climate Change ; Pollen Metabolome ; Ragweed; Ambrosia-artemisiifolia L.; Tnf-alpha; Dendritic Cells; Atmospheric Co2; Birch Pollen; T-cells; Activation; Il-1; Th2; Expression
ISSN (print) / ISBN 0105-4538
e-ISSN 1398-9995
Zeitschrift Allergy
Quellenangaben Band: 76, Heft: 6, Seiten: 1718-1730 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
Förderungen Christine-Kuhne Center for Allergy Research and Education (CK-Care), HGFHICAM Initiative