PuSH - Publikationsserver des Helmholtz Zentrums München

Linkage between dissolved organic matter transformation, bacterial carbon production, and diversity in a shallow oligotrophic aquifer: Results from flow-through sediment microcosm experiments.

Front. Microbiol. 11:543567 (2020)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
Aquifers are important reservoirs for organic carbon. A fundamental understanding of the role of groundwater ecosystems in carbon cycling, however, is still missing. Using sediment flow-through microcosms, long-term (171d) experiments were conducted to test two scenarios. First, aquifer sediment microbial communities received dissolved organic matter (DOM) at low concentration and typical to groundwater in terms of composition (DOM-1x). Second, sediments received an elevated concentration of DOM originating from soil (DOM-5x). Changes in DOM composition were analyzed via NMR and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Carbon production, physiological adaptations and biodiversity of groundwater, and sediment prokaryotic communities were monitored by total cell counts, substrate use arrays, and deep amplicon sequencing. The experiments showed that groundwater microbial communities do not react very fast to the sudden availability of labile organic carbon from soil in terms of carbon degradation and biomass production. It took days to weeks for incoming DOM being efficiently degraded and pronounced cell production occurred. Once conditioned, the DOM-1x supplied sediments mineralized 294(±230) μgC L−1sed d−1, 10-times less than the DOM-5x fed sediment communities [2.9(±1.1) mgC L−1sed d−1]. However, the overall biomass carbon production was hardly different in the two treatments with 13.7(±4.8) μgC L−1sed d−1 and 14.3(±3.5) μgC L−1sed d−1, respectively, hinting at a significantly lower carbon use efficiency with higher DOM availability. However, the molecularly more diverse DOM from soil fostered a higher bacterial diversity. Taking the irregular inputs of labile DOM into account, shallow aquifers are assumed to have a low resilience. Lacking a highly active and responsive microbial community, oligotrophic aquifers are at high risk of contamination with organic chemicals.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bacterial Production ; Carbon Cycling ; Carbon Use Efficiency ; Dissolved Organic Matter ; Groundwater ; Mass Spectrometry ; Microbial Activity ; Oligotrophy; Microbial Communities; Subsurface Sediments; Seasonal Dynamics; Mass-spectrometry; Growth Efficiency; Water-table; Groundwater; Pristine; Patterns; Biodiversity
ISSN (print) / ISBN 1664-302X
e-ISSN 1664-302X
Quellenangaben Band: 11, Heft: , Seiten: , Artikelnummer: 543567 Supplement: ,
Verlag Frontiers
Verlagsort Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Begutachtungsstatus Peer reviewed
Förderungen Helmholtz Research Program Terrestrial Environment (Topic 3 -Sustainable Water Resource Management)
Helmholtz Water Center Munich within the Helmholtz Research Platform for the Integrated Assessment of Solute Fluxes and Processes in the Regional Water Cycle
German Research Foundation (DFG)