PuSH - Publikationsserver des Helmholtz Zentrums München

Clausing, S.* ; Pena, R.* ; Song, B.* ; Müller, K.* ; Mayer-Gruner, P.* ; Marhan, S.* ; Grafe, M. ; Schulz, S. ; Krüger, J.* ; Lang, F.* ; Schloter, M. ; Kandeler, E.* ; Polle, A.*

Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees.

New Phytol. 229, 2611-2624 (2021)
Verlagsversion Postprint Forschungsdaten DOI
Open Access Green

Nutrient imbalances cause the deterioration of tree health in European forests, but the underlying physiological mechanisms are unknown. Here, we investigated the consequences of decreasing root carbohydrate reserves for phosphorus (P) mobilization and uptake by forest trees. In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were girdled and used to determine root, ectomycorrhizal and microbial activities related to P mobilization in the organic layer and mineral topsoil in comparison with those in non-girdled trees. After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate carboxylase activities linking carbon and P metabolism increased. Root and ectomycorrhizal phosphatase activities and the abundances of bacterial genes catalysing major steps in P turnover increased, but soil enzymes involved in P mobilization were unaffected. The physiological responses to girdling were stronger in P-poor than in P-rich forests. P uptake was decreased after girdling. The soluble and total P concentrations in roots were stable, but fine root biomass declined after girdling. Our results support that carbohydrate depletion results in reduced P uptake, enhanced internal P remobilization and root biomass trade-off to compensate for the P shortage. Since reductions in root biomass render trees more susceptible to drought, our results link tree deterioration with disturbances in the P supply as a consequence of decreased belowground carbohydrate allocation.

Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter European beech; carbohydrates; ectomycorrhiza; microbes; phosphatase; phosphorus deprivation; tree nutrition; Fagus-sylvatica L.; Dissolved Organic-carbon; Phosphoenolpyruvate Carboxylase; Ectomycorrhizal Community; Bacterial Communities; Phosphatase-activity; Plant-responses; Soil-phosphorus; Fungal Biomass; Phenol Oxidase
ISSN (print) / ISBN 0028-646X
e-ISSN 1469-8137
Zeitschrift New Phytologist
Quellenangaben Band: 229, Heft: 5, Seiten: 2611-2624 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
Förderungen Projekt DEAL
Deutsche Forschungsgemeinschaft (DFG)