PuSH - Publikationsserver des Helmholtz Zentrums München

The Pelczynski and Dunford-Pettis properties of the space of uniform convergent fourier series with respect to orthogonal polynomials.

Colloq. Math. 164, 1-9 (2021)
DOI Verlagsversion bestellen
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The Banach space U(mu) of uniformly convergent Fourier series with respect to an orthonormal polynomial sequence with orthogonalization measure mu supported on a compact set S subset of R is studied. For certain measures mu, involving Bernstein-Szego polynomials and certain Jacobi polynomials, it is proven that U(mu) has the Pelczyriski property, and also that U(mu) and U(mu)* have the Dunford-Pettis property.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Orthogonal Polynomials ; Fourier Series ; Uniform Convergence ; Pelczynski Property ; Dunford-pettis Property ; Bernstein-szego Polynomials ; Jacobi Polynomials
ISSN (print) / ISBN 0010-1354
e-ISSN 1730-6302
Quellenangaben Band: 164, Heft: 1, Seiten: 1-9 Artikelnummer: , Supplement: ,
Verlag Institute of Mathematics, Polish Academy of Sciences
Verlagsort Krakowskie Przedmiescie 7 Po Box 1001, 00-068 Warsaw, Poland
Begutachtungsstatus Peer reviewed