PuSH - Publikationsserver des Helmholtz Zentrums München

Meier, F.* ; Köhler, N. ; Brunner, A.D.* ; Wanka, J.-M.H. ; Voytik, E.* ; Strauss, M.T.* ; Theis, F.J. ; Mann, M.*

Deep learning the collisional cross sections of the peptide universe from a million experimental values.

Nat. Commun. 12:1185 (2021)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
The size and shape of peptide ions in the gas phase are an under-explored dimension for mass spectrometry-based proteomics. To investigate the nature and utility of the peptide collisional cross section (CCS) space, we measure more than a million data points from whole-proteome digests of five organisms with trapped ion mobility spectrometry (TIMS) and parallel accumulation-serial fragmentation (PASEF). The scale and precision (CV < 1%) of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS values solely based on the peptide sequence. Cross section predictions for the synthetic ProteomeTools peptides validate the model within a 1.4% median relative error (R > 0.99). Hydrophobicity, proportion of prolines and position of histidines are main determinants of the cross sections in addition to sequence-specific interactions. CCS values can now be predicted for any peptide and organism, forming a basis for advanced proteomics workflows that make full use of the additional information.
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 12, Heft: 1, Seiten: , Artikelnummer: 1185 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Förderungen Projekt DEAL