PuSH - Publikationsserver des Helmholtz Zentrums München

März, J.* ; Kurlbaum, M.* ; Roche-Lancaster, O.* ; Deutschbein, T.* ; Peitzsch, M.* ; Prehn, C. ; Weismann, D.* ; Robledo, M.* ; Adamski, J. ; Fassnacht, M.* ; Kunz, M.* ; Kroiss, M.*

Plasma metabolome profiling for the diagnosis of catecholamine producing tumors.

Front. Endocrin. 12:722656 (2021)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
Context: Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective: Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design: Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients: Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results: Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. Conclusions: The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Adrenal ; Catecholamines ; Feature Selection ; Machine Learning ; Mass Spectronomy ; Paraganglioma ; Pheochromocytoma ; Targeted Metabolomics
ISSN (print) / ISBN 1664-2392
e-ISSN 1664-2392
Quellenangaben Band: 12, Heft: , Seiten: , Artikelnummer: 722656 Supplement: ,
Verlag Frontiers
Verlagsort Lausanne
Begutachtungsstatus Peer reviewed
Institut(e) Molekulare Endokrinologie und Metabolismus (MEM)
Institute of Experimental Genetics (IEG)
Förderungen Deutsche Forschungsgemeinschaft
Schickedanz Kinderkrebsstiftung